您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 基于Matlab的低通抽样定理仿真
DSP课程设计专业:电子信息技术工程年级:2011级不姓名:陈兰兰学号:20113015指导教师:刘德春阿坝师专电子信息工程系DSP课程设计专业:电子信息技术工程年级:2011级不姓名:宋雨娟学号:20113008指导教师:刘德春阿坝师专电子信息工程系基于Matlab的低通抽样定理仿真(中文题目一般不超过20个字)(1.海军航空工程学院山东烟台2640012.海军装备研究院北京100161)(单位格式一般为:单位名称省市邮编)摘要:基于Matlab的低通抽样定理目的,通过对连续信号进行采样,在满足采样定理和不满足采用定理两种情况下对连续信号和采样信号进行FFT频谱分析的方法,通过从采样信号中恢复原信号,对不同采样频率下的恢复信号进行比较分析的试验,得到原信号的结论.关键词:Matlab;低通抽样定理;采样定理;连续信号;恢复信号.引言随着信息、通信、计算机科学与技术的迅速发展,数字信号处理得到了很快发展,因此,对低通抽样定理的要求也越来越高。低通抽样定理的目的是对真实世界的连续模拟信号进行测量或滤波。因此在进行数字信号处理之前需要将信号从模拟域转换到数字域,这通常通过模数转换器实现。而数字信号处理的输出经常也要变换到模拟域,这是通过数模转换器实现的。即通过低通抽样定理来进行模拟域与数字域的转换。低通抽样定理的核心是抽样与信号的恢复。使信号在数字域和频域都实现了离散化,从而可以用通用计算机处理离散信号。而使数字信号处理从理论走向实用的是快速傅立叶变换(FFT),FFT的出现大大减少了DFT的运算量,使实时的数字信号处理成为可能、极大促进了该学科的发展。1、测试需求分析本次课程设计应用MATLAB验证时域采样定理。了解MATLAB软件,学习应用MATLAB软件的仿真技术。它主要侧重于某些理论知识的灵活运用,以及一些关键命令的掌握,理解分析等。初步掌握线性系统的设计方法,培养独立工作能力。加深理解时域采样定理的概念,掌握利用MATLAB分析系统频率响应的方法和掌握利用MATLAB实现连续信号采样、频谱分析和采样信号恢复的方法。计算在临界采样、过采样、欠采样三种不同条件下恢复信号的误差,并由此总结采样频率对信号恢复产生误差的影响,从而验证时域采样定理。2.采样定理:设连续信号)(txa属带限信号,最高截止频率为c,如果采样角频率cs2,那么让采样性信号)(txa通过一个增益为T、截止频率为2/s的理想低通滤波器,可以唯一地恢复出原连续信号)(txa。否则,cs2会造成采样信号中的频谱混叠现象,不可能无失真地恢复原连续信号。对连续信号进行等间隔采样形成采样信号,对其进行傅里叶变换可以发现采样信号的频谱是原连续信号的频谱以采样频率s为周期进行周期性的延拓形成的。对模拟信号进行采样可以看做一个模拟信号通过一个电子开关S,设电子开关每隔周期T和上一次,每次和上的时间为τ,在电子开关的输出端得到采样信号x^a(t)。用公式表示如图1:图1对模拟信号进行采样3.信号的恢复:可用传输函数)(jG的理想低通滤波器不失真地将原模拟信号)(tf恢复出来,只是一种理想恢复。2)2sin()(21)(ttdejGtgssj因为Ts2TtTttg)sin()((2.2.2)理想低通滤波器的输入输出)(tf和)(ty,)(ty=)(tf*)(tg=dtgtf)()((2.2.3)4、测试系统软件设计4.1用MATLAB产生连续信号y=sin(100*pi*t)+cos(200*pi*t)和其对应的频谱:程序:clc;clear;x1=0:1/10000:1/10;w=(0:255)/256*500;%w=linspace(0,100*pi,length(x1));y=sin(100*pi*x1)+cos(200*pi*x1);figuresubplot(211)plot(x1,y);xlabel('t');ylabel('x(t)');title('原时域连续信号y=sin(100*pi*t)+cos(200*pi*t)');gridy1=y;%sin1=sin(x1);n=0:(length(x1)-1);subplot(212)plot(w,fft1(w,y1,n));xlabel('w');ylabel('x(w)');title('其对应频域信号Y=FT(sin(100*pi*t)+cos(200*pi*t)');grid则产生原时域连续信号与频谱如图2所示:图2原时域连续信号与频谱其中要用到子函数fft1,程序代码如下:functionresult=fft1(w,hanshu,n)a=cell(1,length(w));fori=1:length(w)m=hanshu.*((exp(-j*(i-1)*pi/100)).^n);a{i}=sum(m);endfori=1:length(w)result(i)=a{i};end4.2对连续信号y=sin(100*pi*t)+cos(200*pi*t)进行抽样并产生其频谱程序:%................采样后的信号和频谱.......................................clc;clear;00.010.020.030.040.050.060.070.080.090.1-2-1012tx(t)原时域连续信号y=sin(100*pi*t)+cos(200*pi*t)0501001502002503003504004505000200400600wx(w)其对应频域信号Y=FT(sin(100*pi*t)+cos(200*pi*t)n1=input('请输入采样点数n:');n=0:n1;zb=size(n);figuresinf=sin(100*pi*n/(10*zb(2)))+cos(200*pi*n/(10*zb(2)))%sinf=sin(8*pi*n/zb(2));subplot(211);stem(n,sinf,'.');xlabel('n');ylabel('x(n)');title('采样后的时域信号y=x(n)');w=0:(pi/100):4*pi;subplot(212)plot(w,fft1(w,sinf,n));xlabel('w');ylabel('x(w)');title('采样后的频域信号y=FT(sin(100*pi*n)+cos(200*pi*n))');grid当输入n=100时,所得结果原时域连续信号的采样信号与频谱如图3所示:图3原时域连续信号的采样信号与频谱当输入n=150时,所得结果原时域连续信号的采样信号与频谱如图4所示:0102030405060708090100-2-1012nx(n)采样后的时域信号y=x(n)02468101214-50050wx(w)采样后的频域信号y=FT(sin(100*pi*n)+cos(200*pi*n))图4原时域连续信号的采样信号与频谱4.2通过低通滤波恢复原连续信号%................经低通滤波恢复原信号......................................[B,A]=butter(8,350/500);%设置低通滤波器参数[H,w]=freqz(B,A,512,2000);figure;%绘制低通频谱图plot(w*2000/(2*pi),abs(H));xlabel('Hz');ylabel('频率响应幅度');title('低通滤波器');grid低通滤波器的频谱如图5所示:如图5:低通滤波器的频谱050100150-2-1012nx(n)采样后的时域信号y=x(n)02468101214-100-50050100wx(w)采样后的频域信号y=FT(sin(100*pi*n)+cos(200*pi*n))00.511.522.533.5x10500.20.40.60.811.2Hz频率响应幅度低通滤波器figurey=filter(B,A,sinf);subplot(2,1,1);plot(y);%恢复后的连续信号y=sin(100*pi*t)+cos(200*pi*t)xlabel('t');ylabel('x(t)');title('恢复后的连续信号y=sin(100*pi*t)+cos(200*pi*t)');grid;Y=fft(y,512);w=(0:255)/256*500;subplot(2,1,2);plot(w,abs([Y(1:256)]));%绘制频谱图xlabel('Hz');ylabel('频率响应幅度');title('频谱图');gridn=100时恢复后的信号和频谱如图6所示:图6n=100时恢复后的信号和频谱5、结论本研究结果说明了在Matlab的低通抽样定理仿真中进行模拟/数字信号的转换过程中,得出了当采样频率fs.max大于信号中最高频率fmax的2倍时(fs.max=2fmax),采样之后的数字信号完整地保留了原始信号中的信息。实际应用中保证采样频率为信号最高频率的5~10倍;采样定理是信息量化的基础,使离散的2琎制比特表示连续的模拟量的理论依据。020406080100120-2-1012tx(t)恢复后的连续信号y=sin(100*pi*t)+cos(200*pi*t)0501001502002503003504004505000204060Hz频率响应幅度频谱图参考文献:[1]陈怀琛,数字信号处理教程—MATLAB释义与实现。北京:电子工业出版社,2004[2]StanleyWD.DigitalSignalProcessing.restonPublishingCompany,Inc.A,1975.常迥译。数字信号处理.北京:科学出版社,1979[3]楼顺天,李博菡。基于MATLAB的系统分析与设计—信号处理。西安:西安电子科技大学出版社,1998[4]门爱东,苏菲等。数字信号处理(第二版)。北京:科学出版社,2009[5]VinayK.Ingle,JohnG.Proakis.DigitalSignalProcessingUsingMATLABV.4.PwsPublishingCompany,ADivisionOfInternationalThomsonTublishingInc.,1996.陈怀琛等译。数字信号处理及其MATLAB实现。北京:电子工业出版社,1998
本文标题:基于Matlab的低通抽样定理仿真
链接地址:https://www.777doc.com/doc-2570595 .html