您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 企业文化 > 合成生物学中那些不得不说的技术
生物技术132孟庆猛1309011066合成生物学中那些不得不说的技术20世纪的生物学研究一直着眼于对生物系统的不断分解,解剖至细胞中单个蛋白或基因,研究其结构和功能来解释生命现象。但随着当代分子生物学技术的迅猛发展,以系统化设计和工程化构建为理念的合成生物学成为新一代生物学的发展方向。合成生物学旨在对多种天然的或人工设计的生物学元件进行合理而系统的组合以获得重构的或非天然的“生物系统”,其涵盖的研究内容可以大体分为3个层次:一是利用已知功能的天然生物模体(motif)或模块(module)构建成新型调控网络并表现出新功能;二是采用从头合成(denovosynthesis)的方法,人工合成基因组DNA并重构生命体;第三个层次则是在前两个研究领域得到充分发展之后,创建完整的全新生物系统乃至人工生命体(artificiallife)。合成生物学强调利用工程化的设计理念,实现从元件到模块再到系统的“自下而上”设计。利用生物系统最底层的DNA、RNA、蛋白质等作为设计的元件,利用转录调控、代谢调控等生物功能将这些底层元件关联起来形成生物模块,再将这些模块连接成系统,实现所需的功能。这是一门涉及微生物学、分子生物学、系统生物学、遗传工程、材料科学以及计算科学等多个领域的综合性交叉学科。它有别于传统的基因工程,其目的在于组装各种生命元件来建立人工生物体系,让它们能像电路一样在生物体内运行,使生物体能按预想的方式完成各种生物学功能。合成生物学的最高境界是灵活设计和改造生命,重塑生命体。本文就目前合成生物学采用的关键技术和研究应用进展两方面进行综述。基因组的人工合成技术2010年5月20日,Science报道了Venter研究组采用化学方法合成了一个1.08Mb的蕈状支原体基因组,并将其移植入一个山羊支原体受体细胞,从而创造了一个仅由合成基因组控制的新的蕈状支原体细胞。这项成果在合成生物学的发展史中具有里程碑的意义。在此之前,也有许多基因组合成的成功报道。2002年,纽约州立大学Wimmer实验室合成了脊髓灰质炎病毒,这是人类历史上第一个人工合成的病毒。多年来,Venter等一直致力于合成基因组的研究。2003年,合成了长达5386bp的ΦX174噬菌体基因组,实现了用寡核苷酸合成的方法精确合成了5~6kb的DNA序列;2008年,Venter实验室又合成了生殖支原体基因组,该基因组全长582970bp,是已知的生物体中独立生存的最小基因组;2010年10月他们又发明了迄今最简单有效的基因合成技术,并以此合成了实验小鼠的线粒体基因组。Dymond等的研究更进了一步,他们于2011年报道成功设计合成了酿酒酵母的部分染色体,这是酿酒酵母基因组人工合成计划(SC2.0Project)取得的第一个成果,该项目的最终目标是人工合成构建酿酒酵母基因组。酵母基因组人工合成将是合成生物学发展史上又一重要的里程碑。DNA合成是支撑合成生物学发展的核心技术,它不依赖于DNA模板,可根据已知的DNA序列直接合成,在基因及生物元件的合成、基因回路和生物合成途径的重新设计组装,以及全基因组的人工合成中发挥重大作用。由于化学合成的DNA片段长度有限,要合成长的DNA片段需要先合成短的寡核苷酸,然后再将寡核苷酸进行拼接。因此,基因组合成的基本思路为:①按照原始基因组序列设计合成寡核苷酸;②利用各种方法将寡核苷酸拼接成较长的DNA序列;③以较长的序列为基础,进一步拼接得到更长的DNA序列,拼接成完整的基因组;④将合成的基因组移植到细胞中,并验证其功能。一、寡核苷酸的合成目前寡核苷酸一般采用固相亚磷酰胺三酯法合成。寡核苷酸的长度是一个重要的参数,随着长度的延长,产率下降,纯度也降低,积累的合成错误大大增加。较短的寡核苷酸会有较少的错误,但是需要增加组装所需的重叠序列,使合成成本增加。使用60-mer的寡核苷酸,可以最大程度地降低错配率和生产成本。二、由寡核苷酸拼接成较长的DNA片段寡核苷酸可以通过各种方法拼接成几百bp到几千bp的DNA片段。常用的体外拼接方法有以下两种:连接酶链式反应(ligasechainreaction,LCR)和快速聚合酶链式组装法(polymerasechainassembly,PCA)。LCR法利用Taq连接酶将首尾相连、重叠杂交的寡核苷酸片段连接起来,连接反应在较高温度下进行,因而可以排除DNA二级结构的干扰;但是基因合成的成本大大增加。PCA法是两条具有部分重叠的寡核苷酸互为引物互为模板进行聚合酶的延伸,延伸得到的序列再通过与其他寡核苷酸退火、延伸,进行多次循环后,最终合成目的序列。PCA法合成成本较连接酶法大大降低。这种方法逐渐得到广泛使用,并且衍生出一系列的DNA拼接方法,包括TBIO法(thermodynamicallybalancedinside-out)、双重不对称PCR(dualasymmetricPCR)、重叠延伸PCR(overlapextensionPCR,OE-PCR)和连续PCR等。此外,Venter小组报道将两端带有重叠序列的寡核苷酸片段和载体转入酵母细胞中,利用酵母体内的同源重组可以拼接起来并克隆到载体上,可以实现38个寡核苷酸片段同时拼接。三、DNA大片段和基因组的组装利用LCR和PCA法一般可将寡核苷酸拼接成几千bp以下的基因序列。更长的大片段和基因组DNA则需要进一步拼接。常用的拼接方法有以下几种:①利用限制性内切酶和连接酶的连接这是最简单的方法,通过连接将片段连成全长。但是当进行多个DNA片段连接时,往往很难找到合适的酶切位点,而且连接片段会有几个碱基的残留,因此该方法在多个DNA片段连接时有很大的局限性。合成生物学中的Biobrick连接法巧妙地设计了4个限制性内切酶,通过酶切连接可以将DNA片段拼接起来。还有一种筛选连接法(ligationbyselection,LBS),使用IIs型限制性内切酶BsaI和BbsI,并通过抗性筛选实现无痕拼接。Kodumal等利用这种方法最终组装成了32kb长的聚酮合酶基因簇。②基于重叠序列和聚合酶延伸的方法包括重叠延伸PCR(OE-PCR)法和环形聚合酶延伸法(circularpolymeraseextensioncloning,CPEC)。OE-PCR法是相邻的具有重叠序列的DNA片段变性退火后形成互补双链,通过DNA聚合酶进行延伸,再利用末端引物将其扩增出来。该方法方便有效,但依赖于聚合酶的高保真度,合成的大片段长度有限,约在20kb以下。CPEC法原理与OE-PCR类似,但是不需要扩增引物,可将多个相互重叠的DNA片段与载体一步连接成完整的环状质粒,然后直接转化细胞,在体内进行扩增。③不依赖于基因序列和连接反应的克隆方法利用T4DNA聚合酶在无dNTPs的情况下发挥的3'~5'外切酶活性,能将DNA片段消化产生含有同源序列的5'-ssDNA突出端(15~30个碱基),DNA片段之间及DNA与载体依靠同源序列退火,形成环状中间体,直接转化细胞,利用大肠杆菌本身的修复系统修复成完整的环状质粒。这种克隆方法不需要连接酶,也不需要考虑插入片段的序列,可实现多个DNA片段的一次性连接重组,用途非常广泛。国外公司已经开始将其用于商业,比如Novagen公司的RadianceTM系统及Invitrogen公司GatewayTM系统都是基于此技术的原理开发的。Schmid-Burgk等对不依赖于基因序列和连接反应的克隆方法(sequenceandligation-independentcloning,SLIC)进行了改进,设计一段特殊序列,但是这种方法会在连接序列中引入多余的碱基,适用于基因之间的拼接,可用于合成生物学中基因回路的构建及生物途径的组装。④Gibson等温一步拼接法该法是SLIC法的延伸。选用核酸外切酶、DNA聚合酶和DNA连接酶3种酶进行拼接。相邻的具有重叠序列的片段,加入上述3种酶和dNTPs共同孵育。核酸外切酶能从5′降解核苷酸,且不与DNA聚合酶竞争。双链DNA被消化产生突出的单链DNA,重叠序列特异性退火,此时,外切酶逐渐热失活。DNA聚合酶和DNA连接酶修复连接成完整的双链DNA分子,从而实现无痕拼接。Gibson等利用此方法成功地将4个大于100kb的片段在体外组装成完整的583kb的生殖支原体基因组。此外,他们还尝试将600个长60-mers的寡核苷酸(寡核苷酸之间带有20个重叠序列)成功地合成了小鼠的线粒体基因组(16.3kb)。这种方法方便、快速、高效,能组装长达900kb的DNA大片段,而且出错率会大大降低。体外重组拼接一般选用细菌人工染色体(BAC)为载体,但是当DNA片段达到一定长度时(约300kb),BAC在大肠杆菌中不稳定,达到转化的极限,更大的片段需要在微生物体内进行重组。⑤酵母体内同源重组拼接法利用酵母细胞内高效的同源重组系统来实现多个相互存在同源序列的DNA片段的组装。Venter研究组在2008年的MycoplasmagenitaliumJCVI-1.0(582970bp)基因组合成中最后一步拼接就是在酿酒酵母中完成的[2]。虽然利用体外重组系统可以组装成完整的基因组,但是BAC载体在大肠杆菌内不稳定,为此他们建立了转化介导的重组克隆方法(transformation-associatedrecombination,TAR),利用酵母人工染色体(YAC)能大大提高稳定性及TAR克隆效率。TAR载体与1/4基因组片段同时转化到酵母中,这些片段之间的重叠序列使它们发生同源重组。由于YAC带有着丝粒、自主复制序列及筛选标记,因此不需整合到酵母染色体中进行重组,通过设计同源臂可以得到环状的完整的基因组,便于与酵母染色体分离。同样地,Venter研究组利用酵母同源重组完成1078条平均1080bp的DNA片段的组装,最终合成了1.08Mb的M.mycoidesJCVI-syn1.0基因组。选用Ycp型的酵母-大肠杆菌穿梭载体,在酵母体内拼接,然后提取质粒转化到大肠杆菌中进行扩增。酵母同源重组拼接法是目前报道的最高效的组装DNA大片段的方法,在合成更长的DNA如细菌基因组时有很大的优势。但随着要组装的片段不断延长,要合成比酵母还大的基因组时,这种方法是否可行还不清楚。综上,几种常用的大片段和基因组DNA组装方法。四、基因组的移植基因组合成以后,需要人工转移到新的细胞中进行异源表达,实现其功能,这是一项非常有挑战的工作。体外有一些方法可以用来将基因组导入细胞,包括电穿孔、脂质转染法、使用基因枪等。Venter研究组在完成基因组的人工合成之前进行了大量的探索,首先获得了不含蛋白的完整M.mycoides基因组,并采用PEG介导的遗传转化系统将其移植到M.capricolum中,通过四环素抗性筛选转化成功的细胞,最终得到了与供体菌表型相同的细胞[13]。但是当组装完M.mycoides基因组后,从酵母中分离出完整基因组后转化到M.capricolum中,开始并没有得到任何移植成功的细胞,经过分析可能是由于M.mycoides和M.capricolum共用同一套限制酶系统,其基因组是经甲基化修饰的。而在酵母体内拼接后的基因组是没有甲基化的,需在体外用甲基化酶进行修饰,或者破坏M.capricolum的限制性内切酶基因,从而避免受体细胞限制酶系统的阻碍。最终将合成基因组移植入M.capricolum体内,得到由合成DNA控制的人工细胞。五、基因组合成中的错误纠正在基因组合成过程中,由于合成方法本身的限制,不可避免地会引入错误碱基,而且在DNA组装过程中用到的PCR等方法也会引入突变。为了得到高保真的合成DNA,必须对错误和突变进行纠正,这是个耗时耗力的过程。可以使用的纠错方法有:①修饰、标记和分离错配的核苷酸从而可以防止扩增错误的DNA;②使用核酸酶来识别和剪切DNA中的错配,再将余下正确的片段通过重叠延伸PCR重新组装;③定点诱变的方法,对于合成的长链DNA,测序后选择突变少的长链DNA进行定点突变,这是最常使用的方法;④应用错配识
本文标题:合成生物学中那些不得不说的技术
链接地址:https://www.777doc.com/doc-2576231 .html