您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 北邮大二概率论论文正态分布
一.正态分布的基本介绍正态分布(Normaldistribution)又名高斯分布(Gaussiandistribution),是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。若随机变量X服从一个数学期望为μ、标准方差为σ2的高斯分布,记为:X∼N(μ,σ2),则其概率密度函数为f(x)={1\over\sigma\sqrt{2\pi}}\,e^{-{{(x-\mu)^2\over2\sigma^2}}}正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。因其曲线呈钟形,因此人们又经常称之为钟形曲线。我们通常所说的标准正态分布是μ=0,σ=1的正态分布。遵从正态分布的随机变量的概率规律为取μ邻近的值的概率大,而取离μ越远的值的概率越小;σ越小,分布越集中在μ附近,σ越大,分布越分散。当μ维随机向量具有类似的概率规律时,称此随机向量遵从多维正态分布。多元正态分布有很好的性质,例如,多元正态分布的边缘分布仍为正态分布,它经任何线性变换得到的随机向量仍为多维正态分布,特别它的线性组合为一元正态分布。二.正态分布的历史背景:正态分布是最重要的概率分布之一。正态分布概念是由德国的数学家和天文学家Moivre于1733年首次提出的,但由于德国数学家Gauss率先将其应用于天文学家研究,故正态分布又叫高斯分布,高斯这项工作对后世的影响极大,他使正态分布同时有了“高斯分布”的名称,后世之所以多将最小二乘法的发明权归之于他,也是出于这一工作。三.正态分布的主要特征:服从正态分布的变量的频数分布由μ、σ完全决定。1.集中性:正态曲线的高峰位于正中央,即均数所在的位置。2.对称性:正态曲线以均数为中心,左右对称,曲线两端永远不与横轴相交。3.均匀变动性:正态曲线由均数所在处开始,分别向左右两侧逐渐均匀下降。4.正态分布有两个参数,即均数μ和标准差σ,可记作N(μ,σ):均数μ决定正态曲线的中心位置;标准差σ决定正态曲线的陡峭或扁平程度。σ越小,曲线越陡峭;σ越大,曲线越扁平。5.u变换:为了便于描述和应用,常将正态变量作数据转换。μ是正态分布的位置参数,描述正态分布的集中趋势位置。正态分布以X=μ为对称轴,左右完全对称。正态分布的均数、中位数、众数相同,均等于μ。6.σ描述正态分布资料数据分布的离散程度,σ越大,数据分布越分散,σ越小,数据分布越集中。也称为是正态分布的形状参数,σ越大,曲线越扁平,反之,σ越小,曲线越瘦高。四.正态分布的应用正态分布在各个领域中应用都很广泛。首先,有不少医学现象服从或近似服从正态分布,如同性别、同年龄儿童的身高和体重,同性别健康成人的红细胞数、血红蛋白含量、脉搏数等。实验中的测量误差一般也是服从正态分布的,利用这一点,可以准确地进行误差分析和质量控制。在生产中,产品的质量指标,如电子管的使用寿命,电容器的电容量,零件的尺寸。铁水含磷量,纺织品的纤度和强度等一般都服从正态分布。在测量中,如大地测量,天平称量物体,化学分析某物之中某元素的含量等,测量结果一般服从正态分布。在生物学中,同一群体的某种特性指标,如某地同龄儿童的身高,体重,肺活量,在一定条件下生长的农作物的产量等一般服从正态分布。在气象学中,某地每年7月份的平均气温,平均温度以及降水量等一般也服从正态分布。。正态分布广泛存在于自然现象,社会现象以及生产,科学技术的各个领域中。引用:好搜百科
本文标题:北邮大二概率论论文正态分布
链接地址:https://www.777doc.com/doc-2583000 .html