您好,欢迎访问三七文档
(MolecularLuminescenceAnalysis)第6章分子发光分析法第6章红外吸收光谱法6.1荧光分析法6.2磷光分析法6.3化学发光分析法MolecularFluorescenceAnalysisMolecularphosphorescenceAnalysis分子发光:处于基态的分子吸收能量(电、热、化学和光能等)被激发至激发态,然后从不稳定的激发态返回至基态并发射出光子,此种现象称为发光。发光分析包括荧光、磷光、化学发光、生物发光等。物质吸收光能后所产生的光辐射称之为荧光和磷光。MolecularFluorescenceAnalysis一、概述分子荧光分析法是根据物质的分子荧光光谱进行定性,以荧光强度进行定量的一种分析方法。6.1荧光分法分子发光光谱分子发光光谱包括荧光光谱、磷光光谱和化学发光光谱。荧光和磷光为光致发光,是物质的基态分子吸收一定波长范围的光辐射激发至单重激发态,当其由激发态回到基态时产生的二次辐射。荧光由单重激发态向基态跃迁产生。磷光由单重激发态先过渡到三重激发态,然后由三重激发态向基态跃迁向基态跃迁产生。化学发光是化学反应物或反应产物受反应释放的化学能激发而产生的光辐射。当n,L,S三个量子数确定之后,原子能级就基本确定了。用n、L、S三个量子数描述原子能级的光谱项(n2S+1L)。L与S相互作用,可产生2S+1个能级稍微不同的分裂,是产生光谱多重线的原因。M=2S+1叫做谱线的多重性。习惯上将多重性为1、2、3的光谱项分别称为单重态、双重态、三重态。光谱项与光谱支项荧光分析的特点:灵敏度高:视不同物质,检测下限在0.10.001g/mL之间。比UV-Vis的灵敏度高得多。选择性好:可同时用激发光谱和荧光发射光谱定性。结构信息量多:包括物质激发光谱、发射光谱、光强、荧光量子效率、荧光寿命等。应用不广泛:主要是因为能发荧光的物质不具普遍性、增强荧光的方法有限、外界环境对荧光量子效率影响大、干扰测量的因素较多。紫外可见分光光度法的特点(一)灵敏度高吸光光度法测定物质的浓度下限(最低浓度)一般可达1~10-3%的微量组分。对固体试样一般可测到10-4~10-5%的痕量组分。如果对被测组分事先加以富集,灵敏度还可以提高1-2个数量级。二、基本原理(一)分子荧光的产生处于分子基态单重态中的电子对,其自旋方向相反,当其中一个电子被激发时,通常跃迁至第一激发态单重态轨道上,也可能跃迁至能级更高的单重态上。这种跃迁是符合光谱选律的,如果跃迁至第一激发三重态轨道上,则属于禁阻跃迁。单重态与三重态的区别在于电子自旋方向不同,激发三重态具有较低能级。在单重激发态中,两个电子平行自旋,单重态分子具有抗磁性,其激发态的平均寿命大约为10-8s;而三重态分子具有顺磁性,其激发态的平均寿命为10-4~1s以上(通常用S和T分别表示单重态和三重态)。根据量子力学的原理,电子的跃迁不能在任意两个能级之间进行,而必须遵循一定的“选择定则”,这个定则是①△L=±1,②△S=0,③△J=0,±1,但当J=0时,△J=0的跃迁是不允许的。不符合光谱选择定则的跃迁叫禁戒跃迁。若两光谱项之间为禁戒跃迁,处于较高能级的原子具有较长的寿命,原子的这种状态称为亚稳态。光谱选择定则基态:电子自旋配对,多重度=2s+1=1,为单重态,以S0表示。激发单重态:分子吸收能量,电子自旋仍然配对,为单重态,称为激发单重态,以S1,S2…表示激发三重态:分子吸收能量,电子自旋不再配对,为三重态,称为激发三重态,以T1,T2….表示。三重态能级低于单重态(Hund规则)图6.1分子内的光物理过程处于激发态的电子,通常以辐射跃迁方式或无辐射跃迁方式再回到基态。辐射跃迁主要涉及到荧光、延迟荧光或磷光的发射;无辐射跃迁则是指以热的形式辐射其多余的能量,包括振动弛豫(VR)、内部转移(IR)、系间窜跃(IX)及外部转移(EC)等,各种跃迁方式发生的可能性及程度,与荧光物质本身的结构及激发时的物理和化学环境等因素有关。(二)去活化过程(Deactivation)处于激发态分子不稳定,通过辐射或非辐射跃迁等去活化过程返回至基态。这些过程包括:1)振动弛豫(VibrationalRelaxation,VR)在液相或压力足够高的气相中,处于激发态的分子因碰撞将能量以热的形式传递给周围的分子,从而从高振动能层失活至低振动能层的过程,称为振动弛豫。荧光、磷光能级图→振动弛豫S0S1S2T1吸光1吸光2振动弛豫在同一电子能级中,电子由高振动能级转至低振动能级,而将多余的能量以热的形式发出。2)内转化(InternalConversion,IC)对于具有相同多重度的分子,若较高电子能级的低振动能层与较低电子能级的高振动能层相重叠时,则电子可在重叠的能层之间通过振动耦合产生无辐射跃迁,如S2-S1;T2-T1。S0S1S2T1吸光1吸光2内转移荧光、磷光能级图3)荧光发射处于第一激发单重态(S1)的电子跃迁至基态各振动能级(S0)时,将得到最大波长为3的荧光。注意:基态中也有振动驰豫跃迁。很明显,3的波长较激发波长1或2都长,而且不论电子开始被激发至什么高能级,最终将只发射出波长为3的荧光。荧光的产生在10-7-10-9s内完成。荧光、磷光能级图S0S1S2T1吸光1吸光2荧光3荧光4)系间窜跃指不同多重态间的无辐射跃迁,例如S1→T1就是一种系间窜跃。通常,发生系间窜跃时,电子由S1的较低振动能级转移至T1的较高振动能级处。有时,通过热激发,有可能发生T1→S1,然后由S1发生荧光。这是产生延迟荧光的机理。荧光、磷光能级图S0S1S2T1吸光1吸光2荧光3系间窜跃5)外转换(ExternalConversion,EC)受激分子与溶剂或其它溶质分子相互作用发生能量转换而使荧光或磷光强度减弱甚至消失的过程,也称“熄灭”或“猝灭”。S2S1S0T1吸收发射荧光发射磷光系间窜越内转换振动弛豫能量l2l1l3外转换l2T2内转换振动弛豫(三)荧光效率及其影响因素荧光量子产率(荧光效率或量子效率),它表示物质发射荧光的能力,常用下式表示。激发态分子总数发荧光的分子数荧光效率)(f或=发射荧光量子数/吸收荧光量子数。在产生荧光的过程中,涉及到许多辐射和无辐射跃迁过程,如荧光发射、内转移、系间窜跃和外转移等。很明显,荧光的量子产率,将与上述每一个过程的速率常数有关。若用数学式来表达这些关系,得到=kf/(kf+ki)式中:kf为荧光发射过程的速率常数,ki为其它有关过程的速率常数的总和。凡是能使kf值升高而使其它ki值降低的因素,都可增强荧光。实际上,对于高荧光分子,例如荧光素,其量子产率在某些情况下接近1,说明ki很小,可以忽略不计。一般来说,kf主要取决于化学结构,而ki则主要取决于化学环境,同时也与化学结构有关。磷光的量子产率与此类似。分子产生荧光必须具备两个条件:①分子必须具有与所照射的辐射频率相适应的结构,才能吸收激发光;②吸收了与其本身特征频率相同的能量之后,必须具有一定的荧光量子产率。(1)跃迁类型对于大多数荧光物质:首先,经历或n激发,然后经过振动弛豫或其他无辐射跃迁,再发生或n跃迁而得到荧光。在这两种跃迁类型中,跃迁常能发出较强的荧光(较大)。这是由于跃迁具有较大的(一般比n大100-1000倍)。其次,跃迁的寿命约为10-7~10-9s,比n跃迁的寿命10-5—10-7s要短。在各种跃迁过程的竞争中,它是有利于发射荧光的。此外,在跃迁过程中,通过系间窜跃至三重态的速率常数也较小。(S1T1能级差较大),这也有利于荧光的发射。总之,跃迁是产生荧光的主要跃迁类型。(2)共轭效应容易实现激发的芳香族化合物容易发生荧光,能发生荧光的脂肪族和脂环族化合物极少(仅少数高度共轭体系化合物除外)。此外,增加体系的共轭度,荧光效率一般也将增大。例如:在多烯结构中,Ph(CH=CH)3Ph和Ph(CH=CH)2Ph在苯中的分别为0.68和0.28。共轭效应使荧光增强的原因:主要是由于增大荧光物质的,有利于产生更多的激发态分子,从而有利于荧光的发生。(3)刚性平面结构多数具有刚性平面结构的有机分子具有强烈的荧光。因为这种结构可以减少分子的振动,使分子与溶剂或其它溶质分子的相互作用减少,也就减少了碰撞去活的可能性。(4)取代基效应芳香族化合物苯环上的不同取代基对该化合物的荧光强度和荧光光谱有很大的影响。给电子基团,如-OH、-OR、-CN、-NH2、-NR2等,使荧光增强。因为产生了p-共轭作用,增强了电子共轭程度,使最低激发单重态与基态之间的跃迁几率增大。吸电子基团,如-COOH、-NO、-CO、卤素等,会减弱甚至会猝灭荧光。卤素取代基随原子序数的增加而荧光降低。这可能是由所谓“重原子效应”使系间窜跃速率增加所致。在重原子中,能级之间的交叉现象比较严重,因此容易发生自旋轨道的相互作用,增加了由单重态转化为三重态的概率。取代基的空间障碍对荧光也有影响。立体异构现象对荧光强度有显著的影响。四、金属螯合物的荧光除过渡元素的顺磁性原子会发生线状荧光光谱外,大多数无机盐类金属离子,在溶液中只能发生无辐射跃迁,因而不产生荧光。但是,在某些情况下,金属螯合物却能产生很强的荧光,并可用于痕量金属元素分析。(1)螯合物中配位体的发光不少有机化合物虽然具有共轭双键,但由于不是刚性结构,分子处于非同一平面,因而不发生荧光。若这些化合物和金属离子形成螯合物,随着分子的刚性增强,平面结构的增大,常会发生荧光。如8-羟基喹啉本身有很弱的荧光,但其金属螯合物具有很强的荧光。(2)螯合物中金属离子的特征荧光这类发光过程通常是螯合物首先通过配位体的跃迁激发,接着配位体把能量转给金属离子,导致dd*跃迁和ff*跃迁,最终发射的是dd*跃迁和ff*跃迁光谱。35NNHOOHNNOOAl(刚性平面性差,无荧光)(刚性平面性增强,有荧光)NOHNOZn(不发荧光)(发黄绿荧光)例1,2-二苯乙烯反式:平面构型强荧光体顺式:非平面构型非荧光体C=CHHC=CHHNNNN不产生荧光产生荧光CCOO-O-OCOCOO-O-O产生荧光不产生荧光F=0.92CH2OHCH3H3C萘VAF(萘)=5F(VA)荧光黄酚酞偶氮菲偶氮苯五、影响荧光强度的因素(环境因素)①溶剂对荧光强度的影响溶剂的影响可分为一般溶剂效应和特殊溶剂效应。一般溶剂效应指的是溶剂的折射率和介电常数的影响。特殊溶剂效应指的是荧光体和溶剂分子间的特殊化学作用,如氢键的生成和化合作用。一般溶剂效应是普遍的,而特殊溶剂效应则决定于溶剂和荧光体的化学结构。特殊溶剂效应所引起荧光光谱的移动值,往往大于一般溶剂效应所引起的影响。由于溶质分子与溶剂分子间的作用,使同一种荧光物质在不同的溶剂中的荧光光谱可能会有显著不同。有的情况,增大溶剂的极性,将使n跃迁的能量增大,跃迁的能量减小,而导致荧光增强,荧光峰红移。但也有相反的情况,例如,苯胺、萘磺酸类化合物在戊醇、丁醇、丙醇、乙醇和甲醇中,随着醇的极性增大,荧光强度减小,荧光峰蓝移。因此荧光光谱的位置和强度与溶剂极性之间的关系,应根据荧光物质与溶剂的不同而异。如果溶剂和荧光物质形成了化合物,或溶剂使荧光物质的电力状态改变,则荧光峰位和强度都会发生较大的变化。②温度对荧光强度的影响温度上升使荧光强度下降。其中一个原因是分子的内部能量转化作用。当激发分子接受额外热能时,有可能使激发能转换为基态的振动能量,随后迅速振动弛豫而丧失振动能量。另一个原因是碰撞频率增加,使外转换的去活几率增加。③溶液pH值对荧光强度的影响带有酸性或碱性官能团的大多数芳香族化合物的荧光与溶液的pH有关。具有酸性或碱性基团的有机物质,在不同pH值时,其结构可能发生变化,因而荧光强度将发生改变;对无机荧光物质,因pH值会影响其稳定性,因而也可使其荧光强度发生改变。对于金属离子与有机
本文标题:分子发光分析
链接地址:https://www.777doc.com/doc-2584276 .html