您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 企业财务 > 计量经济学复习提纲—庞皓版
第一章1.计量分析的四个步骤:模型设定——参数估计——模型检验——模型应用2.计量模型检验:经济意义检验——统计推断检验——计量经济学检验——模型预测检验3.计量模型的应用:结构分析——经济预测——政策评价——检验与发展经济理论4.正确选择解释变量的原则:符合理论、规律——忽略众多次要因素,突出主要经济变量——数据可得性——每个解释变量之间是独立的5.参数的数据类型:时间序列数据——截面数据——面板数据——虚拟变量数据第二章1.总体相关系数:ρ=Cov(X,Y)/√Var(X)√Var(Y)2.样本相关系数:rxy=Σ(Xi-X_)(Yi-Y_)/√Σ(Xi-X_)^2√Σ(Yi-Y_)^23.总体回归函数中引入随机扰动项的原因:作为未知影响因素的代表——作为无法取得数据的已知因素代表——作为众多细小影响因素的综合代表——模型的设定误差——变量的观测误差——经济现象的内在随机性4.简单线性回归模型的基本假定:1、对变量和模型的假定;2、对随机扰动项ui统计分布的假定(古典假定):零均值假定——同方差假定——无自相关假定——随机扰动项ui与解释变量Xi不相关——正态性假定5.违反零均值假定:影响截距上的估计(影响小)6.违反正态性假定:不影响OLS估计是最佳无偏性,但会使t检验F检验失真(影响大)7.样本回归函数的离差形式:yi^=β2^*xi8.OLS估计值的离差表达式:β2^=Σ(Xi-X_)(Yi-Y_)/Σ(Xi-X_)^2=Σxiyi/Σxi^2β1^=Y_-β2^*X_9.OLS回归线的性质:样本回归线过(X_,Y_)——估计值均值等于实际值均值——剩余项ei的均值为零——Cov(Yi^,ei)=0——Cov(Xi,ei)=010.β^的评价标准:无偏性——有效性——一致性11.β^的统计性质:线性——无偏性——有效性12.Var(^β1)=Ơ^2/Σxi^2——Var(^β2)=ΣXi^2/n*Ơ^2/Σxi^213.^Ơ^2=Σei^2/(n-2)14.总变差平方和:Σ(Yi-Y_)^2=Σyi^2……TSS……n-1回归平方和:Σ(Yi^-Y_)^2=Σ^yi^2……ESS……k-1残差平方和:Σ(Yi-Yi^)^2=Σei^2……RSS……n-k15.可决系数:R^2=ESS/TSS16.SE(^β1)=√(Ơ^2ΣXi^2)/(nΣxi^2)SE(^β2)=√Ơ^2/Σxi^217.t=(^β1-β1)/^SE(^β1)~t(n-2)t=(^β2-β2)/^SE(^β2)~t(n-2)18.区间估计:1.当总体方差Ơ^2已知,α=0.1—±1.645,α=0.05—±1.96,α=0.01—±2.33,P[-tαz=(^β2-β2)/^SE(^β2)tα]=1-α2.当总体方差Ơ^2未知,样本容量大,可用^Ơ^2=Σei^2/(n-2)代替Ơ^2,z=(^β2-β2)/(^Ơ/√Σxi^2)3.当总体方差Ơ^2未知,样本容量小,P[-tα/2t=(^β2-β2)/^SE(^β2)tα/2]=1-α19.对Y平均值的区间预测:SE(^Yf)=Ơ√{1/n+[(Xf-X_)^2/Σxi^2]},置信度1-α的预测区间[^Yf-tα/2*SE(^Yf),^Yf+tα/2*SE(^Yf)]20.对Y个别值预测区间:Yf=^Yf±tα/2*^Ơ√{1+1/n+[(Xf-X_)^2/Σxi^2]}第三章1.多元线性回归模型的古典假定:零均值假定——同方差和无自相关假定——随机扰动项与解释变量不相关——无多重共线性假定——正态性假定2.修正的可决系数:_R^2=1-(1-R^2)(n-1)/(n-k)……k是待估参数个数,R^2必定为正,但修正的可决系数可能为负,这是规定其为0,随着k的增加,_R^2越来越小于R^23.F=ESS(k-1)/RSS(n-k)=R^2/(1-R^2)*(n-k)/(k-1)4.S.E.ofregression:Ơ^2=Σei^2/(n-k)——Ơ=5.t-statistic=coefficient/std.error6.TSS=(n-1)*(S.D.dependentvar)^2第四章1.多重共线性产生的原因:经济变量之间具有共同变化趋势——模型中包含滞后变量——利用截面数据建立模型也可能出现多重共线性——样本数据自身的原因2.完全多重共线性产生的后果:参数的估计值不确定——参数估计值得方差无限大3.不完全多重共线性后果:参数估计值的方差和协方差增大——对参数区间估计时,置信区间趋于变大——严重多重共线性时,假设检验容易作出错误判断——参数估计经济含义不合理。当严重多重共线性时,可能造成可决系数较高,经F检验的参数联合显著性也很高,但对各个参数单独的t检验却可能不显著,甚至可能使估计的回归系数符号相反,得出完全错误的结论4.多重共线性↑——VIF↑——var(^β2)↑、cov(^β2,^β3)↑5.方差膨胀因子:VIF=1/(1-r23^2)6.7.多重共线性的检验:简单相关系数检验法(几乎不用)——方差膨胀因子法(常用)——直观判断法(预判)——逐步回归检验法(既能检验又能修正,不用)8.VIFj=1/(1-Rj^2),多重共线性越严重,VIF越大,越弱VIF越接近1,VIFj=10,R^2=0.9时,存在严重多重共线性,会过度地影响最小二乘估计9.直观判断法:参数估计值有很大的偶然性——参数显著性检验未通过——经济意义检验未通过——相关系数大10.多重共线性的补救措施:一、经验方法1.剔除变量法:简单相关系数法:选相关系数较大的两个变量中,相对不重要剔除方差膨胀因子法:首先剔除最大,如果仍存在,剔除第二大的2.增大样本容量3.变换模型形式(差分法):一般增量之间的线性关系远比总量之间的线性关系弱4.利用非样本先验形式5.横截面数据与时序数据并用6.变量变换二、逐步回归法,三、岭回归法第五章1.产生异方差的原因:模型设定误差——测量误差的变化——截面数据中总体各单位的差异,截面数据较时间序列数据更易产生异方差。2.异方差后果:对参数估计统计特性的影响(仍然具有线性、无偏性、一致性、不再具有最小方差性)——对参数显著性检验的影响(方差、标准差增大,t统计量变小;t检验F检验失效)——对预测的影响(估计仍无偏;不再有效;扩大预测区间,精度下降;预测产生困难)3.异方差性的检验:图示检验法——Goldfeld-Quanadt检验(戈德菲尔德-夸特检验)——White检验——ARCH检验——Glejser检验4.Goldfeld-Quanadt检验:1.基本思想:分别对两个子样本进行回归——计算比较两个回归的剩余平方和是否有明显差异2.前提条件(特点):大样本——递减或递增——只能判断异方差是否存在,无法确定具体是哪个——检验功效取决于c,c越大功效越好3.步骤:排序——数据分组——提出假设H0:两部分数据方差相等H1:两部分数据方差不相等——构造F统计量——比较、判断4.5.White检验特点:大样本——适用各类异方差检验——可以判断具体是哪一个变量引起的异方差——辅助回归中可引入解释变量的相对于原模型的更高次幂——可去掉辅助回归式中解释变量的交叉项6.ARCH检验特点:大样本——数据是时间序列数据——只能判断是否存在,不能具体诊断是哪个一7.若Glejser辅助回归中的系数参数显著不为0,就认为存在异方差8.Glejser检验特点:可用于各种类型的异方差检验——由于异方差形式未知需进行各种测试——不仅能对异方差的存在进行判断,还能给出异方差的具体形式——大样本9.异方差性的补救措施:1.模型变换法:(1)f(Xi)=Xi,Var(ui)=Ơ^2Xi,两端同除√Xi得2.加权最小二乘法3.模型的对数变换第六章1.自相关,又称序列相关,是指总体回归模型的随机误差项ui间存在相关关系2.自相关系数:3.自相关产生的原因:经济系统的惯性——经济活动的滞后效应——数据处理造成的相关——蛛网现象——模型设定偏误4.自相关的后果:一阶自回归形式的性质——自相关对参数估计的影响(无偏性仍成立,不再具有最小方差性)——自相关对模型检验和预测的影响(参数显著性检验失效:t、F、拟合优度检验失效;区间预测精度降低:存在自相关→方差标准差增大→区间扩大)5.自相关检验:图示检验法——DW检验法——相关图和Q统计量——序列相关LM检验6.DW检验的假定条件:解释变量X为非随机的——随机误差项为一阶自回归形式,即ui=ρut-1+Ɛt——线性回归模型中不应含有滞后内生变量作为解释变量——模型的截距项不为零——数据无缺失7.步骤8.DW取值范围9.DW检验决策规则10.DW检验的缺点和局限性:有两个不能确定的区域——上下界表要求n=15——只能检验一阶自相关——有常数项,解释变量中不能含滞后的被解释变量11.LM检验特点:可用于检验高阶自相关——对原模型的解释变量中有滞后被解释变量适用——滞后长度p不能先验确定。12.自相关的补救:广义差分法——科克伦—奥克特迭代法——一阶差分法13.
本文标题:计量经济学复习提纲—庞皓版
链接地址:https://www.777doc.com/doc-2585399 .html