您好,欢迎访问三七文档
双光干涉仪调研报告瑞利干涉仪瑞利干涉仪是一种利用双光束干涉原理的高精度测量仪器,结构简单,使用方便,其光学原理如图。l样品池及p1、p2补偿器的高度仅占整个空间的上半部分,补偿器p1沿垂直轴有一个固定夹角,补偿器p2可借助转鼓测微器F转动来改变夹角,L2是会聚透镜,L3为柱面镜,在观察管中看到上下两列干涉条纹,一列由光缝的下半部分两束光干涉形成,因为下半部分的光程差不变,故此干涉条纹是固定的;从光缝上半部分通过的两束光,分别经样品池后产生上半部干涉条纹。当样品池内不发生光程差(光程差起源于两室中的化学成分、温度、压力等),另p1、p2也不附加光程差时,才和下半部干涉条纹对齐,否则相对下半部干涉条纹便有移动,这样在干涉仪中下半部干涉条纹就是上半部干涉条纹的固定标记。当两样品池中装有不同介质时,其折射率分别为n1,n2由于折射率的不同,引起的光程差为:△=(n2一n1)l=Kλ,式中λ为光源波长,K是对应光程差的干涉级,l为样品池的长度。迈克尔逊干涉仪迈克尔逊干涉仪,是1883年美国物理学家迈克尔逊和莫雷合作,为研究“以太”漂移而设计制造出来的精密光学仪器。它是利用分振幅法产生双光束以实现干涉。通过调整该干涉仪,可以产生等厚干涉条纹,也可以产生等倾干涉条纹。主要用于长度和折射率的测量,若观察到干涉条纹移动一条,便是M2的动臂移动量为λ/2,等效于M1与M2之间的空气膜厚度改变λ/2。在近代物理和近代计量技术中,如在光谱线精细结构的研究和用光波标定标准米尺等实验中都有着重要的应用。利用该仪器的原理,研制出多种专用干涉仪。干涉原理测量光程之差从而测定有关物理量的光学仪器。两束相干光间光程差的任何变化会非常灵敏地导致干涉条纹的移动,而某一束相干光的光程变化是由它所通过的几何路程或介质折射率的变化引起,所以通过干涉条纹的移动变化可测量几何长度或折射率的微小改变量,从而测得与此有关的其他物理量。测量精度决定于测量光程差的精度,干涉条纹每移动一个条纹间距,光程差就改变一个波长(~10-7米),所以干涉仪是以光波波长为单位测量光程差的,其测量精度之高是任何其他测量方法所无法比拟的。根据光的干涉原理制成的一种仪器。将来自一个光源的两个光束完全分并,各自经过不同的光程,然后再经过合并,可显出干涉条纹。在光谱学中,应用精确的迈克尔逊干涉仪或法布里-珀罗干涉仪,可以准确而详细地测定谱线的波长及其精细结构。干涉仪分双光束干涉仪和多光束干涉仪两大类,前者有瑞利干涉仪、迈克耳孙干涉仪及其变型泰曼干涉仪、马赫-秦特干涉仪等,后者有法布里-珀罗干涉仪等。干涉仪的应用极为广泛,主要有如下几方面:①长度的精密测量。在双光束干涉仪中,若介质折射率均匀且保持恒定,则干涉条纹的移动是由两相干光几何路程之差发生变化所造成,根据条纹的移动数可进行长度的精确比较或绝对测量。迈克耳孙干涉仪和法布里-珀罗干涉仪曾被用来以镉红谱线的波长表示国际米。②折射率的测定。两光束的几何路程保持不变,介质折射率变化也可导致光程差的改变,从而引起条纹移动。瑞利干涉仪就是通过条纹移动来对折射率进行相对测量的典型干涉仪。应用于风洞的马赫-秦特干涉仪被用来对气流折射率的变化进行实时观察。③波长的测量。任何一个以波长为单位测量标准米尺的方法也就是以标准米尺为单位来测量波长的方法。以国际米为标准,利用干涉仪可精确测定光波波长。法布里-珀罗干涉仪(标准具)曾被用来确定波长的初级标准(镉红谱线波长)和几个次级波长标准,从而通过比较法确定其他光谱线的波长。④检验光学元件的质量。泰曼干涉仪被普遍用来检验平板、棱镜和透镜等光学元件的质量。在泰曼干涉仪的一个光路中放置待检查的平板或棱镜,平板或棱镜的折射率或几何尺寸的任何不均匀性必将反映到干涉图样上。若在光路中放置透镜,可根据干涉图样了解由透镜造成的波面畸变,从而评估透镜的波像差。⑤用作高分辨率光谱仪。法布里-珀罗干涉仪等多光束干涉仪具有很尖锐的干涉极大,因而有极高的光谱分辨率,常用作光谱的精细结构和超精细结构分析。⑥历史上的作用。19世纪的波动论者认为光波或电磁波必须在弹性介质中才得以传播,这种假想的弹性介质称为以太。人们做了一系列实验来验证以太的存在并探求其属性。以干涉原理为基础的实验最为精确,其中最有名的是菲佐实验和迈克耳孙-莫雷实验。1851年,A.H.L.菲佐用特别设计的干涉仪做了关于运动介质中的光速的实验,以验明运动介质是否曳引以太。1887年,A.A.迈克耳孙和E.W.莫雷合作利用迈克耳孙干涉仪试图检测地球相对绝对静止的以太的运动。对以太的研究为A.爱因斯坦的狭义相对论提供了佐证迈克尔逊干涉仪的应用--微小物理量的测量物一些微小物理量的测量。物理工作者为提高被测物理量精度,常选用特殊的测量装置将理学家研究物理问题时,需要利用各种实验设备来进行物理实验。在物理实验中常常遇到被测物理量放大后再进行测量。迈克耳逊干涉仪的测量系统的机械部分都是采用螺旋测微装置进行测量的。常用的读数显微镜的测微丝杆的螺距是lmm,当丝杆转动一圈时,滑动平台就沿轴向前或后退lmm,在丝杆的一端固定一测微鼓轮,其周界上刻成100分格,因此当鼓轮转动一分格时,滑动平台移动了0.01mm,从而使沿轴线方向的微小位移用鼓轮圆周上较大的弧长精确地表示出来,大大提高了测量精度。位移量的测量由相干光源发出的相干光经透镜调整形成近似的平行光束而入射到周期性变化的分光元件上,相干光经周期性分光元件衍射分解为0,±1,±2,±3,……±n级次的出射光束,反射元件至少使每束出射光束的波阵面沿周期性分光元件刻线的垂直方向反转一定角度而形成反射光束并返回到周期性变化分光元件进行合束又形成0,±1,±2,±3,……±n级次的合束光束,第n级次的合束光束满足n=m1-m2,某一级次的合束光束的干涉条纹由接收器接收而变成电信号送至处理器处理,当周期性分光元件沿其刻线垂直方向位移时,干涉条纹数目的变化正比于该位移量的大小。光纤迈克尔逊干涉仪在角度测量、体浓度测量、引力波测量、光谱测量、光谱成像,混凝土内部应变的测量、温度测量、地震波加速度的测量中的也有着广泛的应用.泰曼干涉仪泰曼-格林式干涉仪是人们熟悉的双光束干涉装置,是以迈克耳孙干涉仪为原型的一种常用的干涉仪。在现代的光学实验室中,人们用激光器和几个光学元件布置一个泰曼-格林干涉仪的光路是很容易的,人们常采用这种光路来检测防震台的稳定性、光路的可靠性、并用它作某些较精密的检测。我们在实践中发现,将此光路略作变动,省去补偿器、采用楔形分束镜分束,并将准直光束改变为发散束所获干涉条纹不仅出现同心圆形图纹和等厚条纹,还会出现椭圆型和双曲线型图纹。本文根据干涉理论,分析了这种情况下的图纹分布,指出:当保持静臂臂长不变,动臂臂长由小变大过程中,干涉图纹由同心圆型逐渐变为椭圆形,而后,变为双曲线型,再逐渐变为椭圆型,最后又变为同心圆型。图纹的形状取决于两束光的光程差,于是,可以根据干涉图纹的形状,很快判断两光束的光程差,这对使用这种光路来进行检测等应用时,能更为迅速地找到动镜的最佳位置,获得最佳的条纹衬比。马赫-秦特干涉仪雅满干涉仪的发展。在雅满干涉仪中,两块玻璃板的前表面起着分光板的作用,而后表面则为平面反射镜,分光板和反射镜不能单独进行调节,而且两束光的间隔为玻璃板厚度所限定。为克服这些局限性,L.马赫和L.秦特使用了四块玻璃板。马赫-秦特干涉仪的结构如图[马赫-秦特干涉仪的光路图]所示。P、P是两块分别具有半反射面A和A的平行平面板,M、M是两块平面反射镜,一般是使四个反射面接近平行,并使它们的中心在一平行四边形的四个顶点上。单色点光源S位于准直镜L的焦平面上,从S发出的光经L准直后,在半反射面A上分为两束光,一束光经M和A反射而达投射物镜L,另一束光则经M反射并透过A后也达L。由于两束光是相干的,在L的焦平面上会产生干涉。将干涉仪的一块分光板稍作倾斜,在视场内会出现为数不多的几条平行等距直条纹。这种干涉仪,由于其两束光可分得很开,特别适用于空气动力学中关于气流折射率或密度分布变化的研究。在作这种研究时,于T处放一个风洞,而在T处放一个参考室(装有不流动的同样气体),后者用以补偿前者的光程。观察气流变化前后的干涉图样的差别,就可求得气流折射率或密度空间分布的变化。实际上,由于气流密度变化非常迅速,必须采用短时间曝光的办法以获得气流密度分布的瞬时图像。这就要求干涉图样本身要有足够的亮度。所以以前多采用扩展光源。目前常以激光器作这种干涉仪的光源,由于激光的单色性好,亮度高,此时不仅能获得清晰而又足够亮的干涉图样,而且使仪器的调节也变得方便。。结束语研究型物理实验是一种不同于传统物理实验教学的模式,它具有很强的灵活多样性,主要以激发我们的求知欲,拓宽其知识面,培养其创新思维能力为目的.
本文标题:双光干涉仪调研报告
链接地址:https://www.777doc.com/doc-2614483 .html