您好,欢迎访问三七文档
当前位置:首页 > 机械/制造/汽车 > 机械/模具设计 > 动量守恒定律(二)碰撞
动量守恒定律(二)碰撞1在光滑水平地面上有两个相同的弹性小球A、B,质量都为m,现B球静止,A球向B球运动,发生正碰。已知碰撞过程中总机械能守恒,两球压缩最紧时的弹性势能为EP,则碰前A球的速度等于()A.mEPB.mEP2C.mEP2D.mEP222如图所示,在光滑水平面上有A、B两小球沿同一条直线向右运动,并发生对心碰撞.设向右为正方向,碰前A、B两球动量分别是pA=10kgm/s,pB=15kgm/s,碰后动量变化可能是()A.ΔpA=5kg·m/sΔpB=5kg·m/sB.ΔpA=-5kg·m/sΔpB=5kg·m/sC.ΔpA=5kg·m/sΔpB=-5kg·in/s·D.ΔpA=-20kg·m/sΔpB=20kg·m/s3甲物体以动量P1与静止在光滑水平面上的乙物体对心正碰,碰后乙物体的动量为P2,则P2和P1的关系可能是()A.P2<P1;B、P2=P1C.P2>P1;D.以上答案都有可能5如图2-10所示,轻质细绳的一端系一质量m=0.01kg的小球,另一端系一光滑小环套在水平轴O上,O到小球的距离d=0.1m,小球跟水平面接触无相互作用力,在球的两侧距球等远处,分别竖立一固定挡板,两挡板相距L=2m.水平面上有一质量为M=0.01kg的小滑块,与水平面间的动摩擦因数μ=0.25,开始时,滑块从左挡板处,以v0=10m/s的初速度向小球方向运动,不计空气阻力,设所有碰撞均无能量损失,小球可视为质点,g=10m/s2.则:(1)在滑块第一次与小球碰撞后的瞬间,悬线对小球的拉力多大?(2)试判断小球能否完成完整的圆周运动.如能完成,则在滑块最终停止前,小球能完成完整的圆周运动多少次?6如图2-4-7所示,滑块A的质量m=0.01kg,与水平地面间的动摩擦因素μ=0.2,用细线悬挂的小球质量均为m=0.01kg,沿x轴排列,A与第1只小球及相邻两小球间距离均为s=2m,线长分别为L1、L2、L3„„(图中只画出三只小球,且小球可视为质点),开始时,滑块以速度v0=10m/s沿x轴正方向运动,设滑块与小球碰撞时不损失机械能,碰撞后小球均恰能在竖直平面内完成完整的圆周运动,重力加速度g=10m/s2。试求:(1)滑块能与几个小球碰撞?(2)碰撞中第n个小球悬线长Ln的表达式?7两个小球A和B用轻质弹簧相连,在光滑的水平直轨道上处于静止状态。在它们左边有一垂直于轨道的固定挡板P,右边有一小球C沿轨道以速度v0射向B球,如图所示。C与B发生碰撞并立即结成一个整体D。在它们继续向左运动的过程中,当弹簧长度变到最短时,长度突然被锁定,不再改变,然后,A球与挡板P发生碰撞,碰后A、D都静止不动,A与P接触而不粘连。过一段时间,突然解除锁定(锁定及解除锁定无机械能损失)。已知A、B、C三球的质量均为m。(1)求弹簧长度刚被锁定后A球的速度。(2)求在A球离开挡板P之后的运动过程中,弹簧的最大弹性势能。8图2中,轻弹簧的一端固定,另一端与滑块B相连,B静止在水平直导轨上,弹簧处在原长状态。另一质量与B相同滑块A,从导轨上的P点以某一初速度向B滑行,当A滑过距离l1时,与B相碰,碰撞时间极短,碰后A、B紧贴在一起运动,但互不粘连。已知最后A恰好返回出发点P并停止,滑块A和B与导轨的滑动摩擦因数都为,运动过程中弹簧最大形变量为l2,重力加速度为g,求A从P出发时的初速度v0。10用轻弹簧相连的质量均为2kg的A、B两物块都以smv/6的速度在光滑的水平地面上运动,弹簧处于原长,质量为4kg的物体C静止在前方,如图3所示,B与C碰撞后二者粘在一起运动。求:在以后的运动中,(1)当弹簧的弹性势能最大时物体A的速度多大?(2)弹性势能的最大值是多大?(3)A的速度有可能向左吗?为什么?11如图4所示,在光滑水平长直轨道上,A、B两小球之间有一处于原长的轻质弹簧,弹簧右端与B球连接,左端与A球接触但不粘连,已知mmmmBA22,,开始时A、B均静止。在A球的左边有一质量为m21的小球C以初速度0v向右运动,与A球碰撞后粘连在一起,成为一个复合球D,碰撞时间极短,接着逐渐压缩弹簧并使B球运动,经过一段时间后,D球与弹簧分离(弹簧始终处于弹性限度内)。(1)上述过程中,弹簧的最大弹性势能是多少?(2)当弹簧恢复原长时B球速度是多大?(3)若开始时在B球右侧某位置固定一块挡板(图中未画出),在D球与弹簧分离前使B球与挡板发生碰撞,并在碰后立即将挡板撤走,设B球与挡板碰撞时间极短,碰后B球速度大小不变,但方向相反,试求出此后弹簧的弹性势能最大值的范围。12如图19所示,水平地面上静止放置着物块B和C,相距l=1.0m。物块A以速度0v=10m/s沿水平方向与B正碰。碰撞后A和B牢固地粘在一起向右运动,并再与C发生正碰,碰后瞬间C的速度v=2.0m/s。已知A和B的质量均为m,C的质量为A质量的k倍,物块与地面的动摩擦因数=0.45.(设碰撞时间很短,g取10m/s2)(1)计算与C碰撞前瞬间AB的速度;(2)根据AB与C的碰撞过程分析k的取值范围,并讨论与C碰撞后AB的可能运动方向。13如图1所示,ABC为一固定在竖直平面内的光滑轨道,BC段水平,AB段与BC段平滑连接。质量为1m的小球从高位h处由静止开始沿轨道下滑,与静止在轨道BC段上质量为2m的小球发生碰撞,碰撞后两球两球的运动方向处于同一水平线上,且在碰撞过程中无机械能损失。求碰撞后小球2m的速度大小2v;(2)碰撞过程中的能量传递规律在物理学中有着广泛的应用。为了探究这一规律,我们才用多球依次碰撞、碰撞前后速度在同一直线上、且无机械能损失的简化力学模型。如图2所示,在固定光滑水平轨道上,质量分别为1231nmmmm、、……、nm……的若干个球沿直线静止相间排列,给第1个球初能1kE,从而引起各球的依次碰撞。定义其中第n个球经过依次碰撞后获得的动能kE与1kE之比为第1个球对第n个球的动能传递系数1nk。a.求1nkb.若10004,,kmmmmm为确定的已知量。求2m为何值时,1nk值最大14在绝缘水平面上放一质量m=2.0×10-3kg的带电滑块A,所带电荷量q=1.0×10-7C.在滑块A的左边l=0.3m处放置一个不带电的绝缘滑块B,质量M=4.0×10-3kg,B与一端连在竖直墙壁上的轻弹簧接触(不连接)且弹簧处于自然状态,弹簧原长S=0.05m.如图所示,在水平面上方空间加一水平向左的匀强电场,电场强度的大小为E=4.0×105N/C,滑块A由静止释放后向左滑动并与滑块B发生碰撞,设碰撞时间极短,碰撞后两滑块结合在一起共同运动并一起压缩弹簧至最短处(弹性限度内),此时弹性势能E0=3.2×10-3J,两滑块始终没有分开,两滑块的体积大小不计,与水平面间的动摩擦因数均为μ=0.5,g取10m/s2.求:(1)两滑块碰撞后刚结合在一起的共同速度v;(2)两滑块被弹簧弹开后距竖直墙壁的最大距离s.15质量为M的小车静止于光滑的水平面上,小车的上表面和41圆弧的轨道均光滑,如图3如图所示,一个质量为m的小球以速度v0水平冲向小车,当小球返回左端脱离小车时,下列说法正确的是:A.小球一定沿水平方向向左做平作抛运动B.小球可能沿水平方向向左作平抛运动C.小球可能沿水平方向向右作平抛运动D.小球可能做自由落体运动16如图半径为R的光滑圆形轨道固定在竖直面内。小球A、B质量分别为m、βm(β为待定系数)。A球从左边与圆心等高处由静止开始沿轨道下滑,与静止于轨道最低点的B球相撞,碰撞后A、B球能达到的最大高度均为14R,碰撞中无机械能损失。重力加速度为g。试求:(1)待定系数β;(2)第一次碰撞刚结束时小球A、B各自的速度和B球对轨道的压力;(3)小球A、B在轨道最低处第二次碰撞刚结束时各自的速度,并讨论小球A、B在轨道最低处第n次碰撞刚结束时各自的速度。17质量为m的小球B用一根轻质弹簧连接.现把它们放置在竖直固定的内壁光滑的直圆筒内,平衡时弹簧的压缩量为x0,如图所示,小球A从小球B的正上方距离为3x0的P处自由落下,落在小球B上立刻与小球B粘在一起向下运动,它们到达最低点后又向上运动,并恰能回到O点(设两个小球直径相等,且远小于x0,略小于直圆筒内径),已知弹簧的弹性势能为1/2kx2,其中k为弹簧的劲度系数,x为弹簧的形变量.求:(1)小球A的质量.(2)小球A与小球B一起向下运动时速度的最大值18如图所示,水平传送带AB长L=4.5m,质量为M=1kg的木块随传送带一起以v1=1m/s的速度向右匀速运动(传送带的传送速度恒定),木块与传送带间的动摩擦因数μ=0.5.当木块运动到传送带的最右端A点时,一颗质量为m=20g的子弹以v0=300m/s水平向左的速度正好射入木块并穿出,穿出速度u=50m/s,以后每隔1s就有一颗子弹射向木块,并从木块中穿出,设子弹穿过木块的时间极短,且每次射入点各不相同,g取10m/s2,求:(1)在被第二颗子弹击中前木块向左运动到离A点多远处?(2)木块在传送带上最多能被多少颗子弹击中?(3)试说明从第一颗子弹射入木块到第二颗子弹刚要射入的时间内,子弹、木块和传送带三者构成的系统是如何产生内能的?19如下图所示,光滑的曲面轨道的水平出口跟停在光滑水平面上的平板小车的上表面相平,质量为m的小滑块从光滑轨道上某处由静止开始滑下并滑下平板小车,使得小车在光滑水平面上滑动。已知小滑块从光滑轨道上高度为H的位置由静止开始滑下,最终停到板面上的Q点。若平板小车的质量为3m。用g表示本地的重力加速度大小,求:(1)小滑块到达轨道底端时的速度大小(2)小滑块滑上小车后,平板小车可达到的最大速度(3)该过程系统产生的总内能20在光滑的水平面上有一质量M=2kg的木板A,其右端挡板上固定一根轻质弹簧,在靠近木板左端的P处有一大小忽略不计质量m=2kg的滑块B。木板上Q处的左侧粗糙,右侧光滑。且PQ间距离L=2m,如图所示。某时刻木板A以υA=1m/s的速度向左滑行,同时滑块B以υB=5m/s的速度向右滑行,当滑块B与P处相距3/4L时,二者刚好处于相对静止状态,若在二者共同运动方向的前方有一障碍物,木板A与它碰后以原速率反弹(碰后立即撤去该障碍物)。求B与A的粗糙面之间的动摩擦因数μ和滑块B最终停在木板A上的位置。(g取10m/s2)21光滑水平面上放着质量mA=1kg的物块A与质量mB=2kg的物块B,A与B均可视为质点,A靠在竖直墙壁上,A、B间夹一个被压缩的轻弹簧(弹簧与A、B均不拴接),用手挡住B不动,此时弹簧弹性势能EP=49J。在A、B间系一轻质细绳,细绳长度大于弹簧的自然长度,如图所示。放手后B向右运动,绳在短暂时间内被拉断,之后B冲上与水平面相切的竖直半圆光滑轨道,其半径R=0.5m,B恰能到达最高点C。取g=10m/s2,求(1)绳拉断后瞬间B的速度vB的大小;(2)绳拉断过程绳对B的冲量I的大小;(3)绳拉断过程绳对A所做的功W。22如图所示,铁块的质量为M,木板质量为m,且mM,铁块与小车之间的动摩擦因数为,它们一起以速度v沿光滑地面向右运动,小车与右侧的墙壁发生碰撞且无能量损失,设小车足够长,求:(1)第一次碰撞后小车离墙面的最远距离(2)最终铁块相对小车滑行的距离23如图所示,P是固定的竖直挡板,A是置于光滑水平面上的平板小车(小车表面略低于挡板下端),B是放在小车最左端的一个可视为质点的小物块.开始时,物块随小车一起以相同的水平速度向左运动,接着物块与挡板发生了第一次碰撞,碰后物块相对于小车静止时的位置离小车最左端的距离等于车长的3/4,此后物块又与挡板发生了多次碰撞,最后物块恰未从小车上落下。若物块与小车表面间的动摩擦因数是个定值,物块与挡板发生碰撞时无机械能损失且碰撞时间极短暂,试确定小车与物块的质量关系。24如图所示,倾角为θ的斜面上静止放置三个质量均为m的木箱,相邻两木箱的距离均为l。工人用沿斜面的力推最下面的木箱使之上滑,逐一与其他木箱碰撞。每次碰撞后木箱都粘在一起运动。整个过程中工人的推力不变,最后恰好能推着
本文标题:动量守恒定律(二)碰撞
链接地址:https://www.777doc.com/doc-2616803 .html