您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 人事档案/员工关系 > 北京市首师大附中2015-2016学年高一(下)期末数学试卷(解析版)
第1页(共19页)2015-2016学年北京市首师大附中高一(下)期末数学试卷一、选择题:本大题共8个小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“∃x0>0,2≤0”的否定是()A.∀x>0,2x>0B.∀x≤0,2x>0C.∀x>0,2x<0D.∀x≤0,2x<02.设l,m是两条不同的直线,α是一个平面,则下列命题正确的是()A.若l⊥m,m⊂α,则l⊥αB.若l⊥α,l∥m,则m⊥αC.若l∥α,m⊂α,则l∥mD.若l∥α,m∥α,则l∥m3.在△ABC中,三个内角A,B,C的对边分别是a.b.c,已知B=30°,c=150,b=50,那么这个三角形是()A.等边三角形B.等腰三角形C.直角三角形D.等腰三角或直角三角形4.如图所示的程序框图,若输出的S=31,则判断框内填入的条件是()A.i>4?B.i>5?C.i≤4?D.i≤5?5.设{an}(n∈N*)是等差数列,Sn是其前n项的和,且S5<S6,S6=S7>S8,则下列结论错误的是()A.d<0B.a7=0C.S9>S5D.S6与S7均为Sn的最大值6.如图所示,E是正方形ABCD所在平面外一点,E在面ABCD上的正投影F恰在AC上,FG∥BC,AB=AE=2,∠EAB=60°,有以下四个命题:(1)CD⊥面GEF;(2)AG=1;(3)以AC,AE作为邻边的平行四边形面积是8;(4)∠EAD=60°.其中正确命题的个数为()第2页(共19页)A.1B.2C.3D.47.下列命题中,正确的命题个数为()①△ABC的三边分别为a,b,c,则该三角形是等边三角形的充要条件为a2+b2+c2=ab+ac+bc;②数列{an}的前n项和为Sn,则Sn=An2+Bn是数列{an}为等差数列的充要条件;③在数列{an}中,a1=1,Sn是其前n项和,满足Sn+1=Sn+2,则{an}是等比数列;④已知a1,b1,c1,a2,b2,c2都是不等于零的实数,关于x的不等式a1x2+b1x+c1>0和a2x2+b2x+c2>0的解集分别为P,Q,则==是P=Q的充分必要条件.A.1B.2C.3D.48.如图,设P为正四面体A﹣BCD表面(含棱)上与顶点不重合的一点,由点P到四个顶点的距离组成的集合记为M,如果集合M中有且只有2个元素,那么符合条件的点P有()A.4个B.6个C.10个D.14个二、填空题(共6小题,每题4分,满分24分,将答案填在答题纸上)9.已知数列{an}的前n项和为Sn,an≠0(n∈N*),anan+1=Sn,则a3﹣a1=______.10.执行如图所示的程序框图,输出的a值为______.第3页(共19页)11.已知一个三棱锥的三视图如图所示,主视图和左视图都是腰长为1的等腰直角三角形,那么,这个三棱锥的表面积为______.12.a>0,b>0,a+b=1,则+的最小值为______.13.如图,四面体ABCD的一条棱长为x,其余棱长均为1,记四面体ABCD的体积为F(x),则函数F(x)的单调增区间是______;最大值为______.14.在数列{an}中,若an2﹣an﹣12=p(n≥2,n∈N×,p为常数),则称{an}为“等方差数列”,下列是对“等方差数列”的判断;①若{an}是等方差数列,则{an2}是等差数列;②{(﹣1)n}是等方差数列;③若{an}是等方差数列,则{akn}(k∈N*,k为常数)也是等方差数列;④若{an}既是等方差数列,又是等差数列,则该数列为常数列.其中正确命题序号为______.(将所有正确的命题序号填在横线上)三、解答题(本大题共4小题,共44分.解答应写出文字说明、证明过程或演算步骤.)第4页(共19页)15.已知p:>1,q:∃x∈R,ax2+ax﹣1≥0,r:(a﹣m)(a﹣m﹣1)>0.(1)若p∧q为真,求实数a的取值范围;(2)若¬p是¬r的必要不充分条件,求m的取值范围.16.如图△ABC中,已知点D在BC边上,满足•=0.sin∠BAC=,AB=3,BD=.(Ⅰ)求AD的长;(Ⅱ)求cosC.17.如图,在四棱锥P﹣ABCD中,底面ABCD是菱形,且∠ABC=120°,点E是棱PC的中点,平面ABE与棱PD交于点F.(1)求证:AB∥EF;(2)若PA=PD=AD=2,且平面PAD⊥平面ABCD,求①二面角E﹣AF﹣D的二面角的余弦值;②在线段PC上是否存在一点H,使得直线BH与平面AEF所成角等于60°,若存在,确定H的位置,若不存在,说明理由.18.已知等差数列{an}的公差d≠0,若a2=5且a1,a3,a6成等比数列.(1)求数列{an}的通项公式;(2)若数列{bn}满足b1=0且对任意的n≥2,均有|bn﹣bn﹣1|=2①写出b3所有可能的取值;②若bk=2116,求k的最小值.第5页(共19页)2015-2016学年北京市首师大附中高一(下)期末数学试卷参考答案与试题解析一、选择题:本大题共8个小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“∃x0>0,2≤0”的否定是()A.∀x>0,2x>0B.∀x≤0,2x>0C.∀x>0,2x<0D.∀x≤0,2x<0【考点】命题的否定.【分析】利用特称命题的否定是全称命题,写出结果即可.【解答】解:因为特称命题的否定是全称命题,所以,命题“∃x0>0,2≤0”的否定是:∀x>0,2x>0.故选:A.2.设l,m是两条不同的直线,α是一个平面,则下列命题正确的是()A.若l⊥m,m⊂α,则l⊥αB.若l⊥α,l∥m,则m⊥αC.若l∥α,m⊂α,则l∥mD.若l∥α,m∥α,则l∥m【考点】直线与平面平行的判定.【分析】根据题意,依次分析选项:A,根据线面垂直的判定定理判断.C:根据线面平行的判定定理判断.D:由线线的位置关系判断.B:由线面垂直的性质定理判断;综合可得答案.【解答】解:A,根据线面垂直的判定定理,要垂直平面内两条相交直线才行,不正确;C:l∥α,m⊂α,则l∥m或两线异面,故不正确.D:平行于同一平面的两直线可能平行,异面,相交,不正确.B:由线面垂直的性质可知:平行线中的一条垂直于这个平面则另一条也垂直这个平面.故正确.故选B3.在△ABC中,三个内角A,B,C的对边分别是a.b.c,已知B=30°,c=150,b=50,那么这个三角形是()A.等边三角形B.等腰三角形C.直角三角形D.等腰三角或直角三角形第6页(共19页)【考点】三角形的形状判断.【分析】由正弦定理求出sinC=,C=60°或120°.再根据三角形的内角和公式求出A的值,由此即可这个三角形的形状.【解答】解:∵△ABC中,已知B=30°,b=50,c=150,由正弦定理可得,∴sinC=,可得:C=60°或120°.当C=60°,∵B=30°,∴A=90°,△ABC是直角三角形.当C=120°,∵B=30°,∴A=30°,△ABC是等腰三角形.故△ABC是直角三角形或等腰三角形,故选:D.4.如图所示的程序框图,若输出的S=31,则判断框内填入的条件是()A.i>4?B.i>5?C.i≤4?D.i≤5?【考点】程序框图.【分析】根据框图的流程知,算法的功能是计算S=1+2+22+…+2n的值,由输出的S是31,得退出循环体的n值为5,由此得判断框的条件.【解答】解:根据框图的流程得:算法的功能是计算S=1+2+22+…+2n的值,∵输出的S是31,∴S==2n+1﹣1=31,解得n=4;退出循环体的n值为5,∴判断框的条件为n≥5或n>4.故选:A.第7页(共19页)5.设{an}(n∈N*)是等差数列,Sn是其前n项的和,且S5<S6,S6=S7>S8,则下列结论错误的是()A.d<0B.a7=0C.S9>S5D.S6与S7均为Sn的最大值【考点】等差数列的前n项和.【分析】利用结论:n≥2时,an=sn﹣sn﹣1,易推出a6>0,a7=0,a8<0,然后逐一分析各选项,排除错误答案.【解答】解:由S5<S6得a1+a2+a3+…+a5<a1+a2++a5+a6,即a6>0,又∵S6=S7,∴a1+a2+…+a6=a1+a2+…+a6+a7,∴a7=0,故B正确;同理由S7>S8,得a8<0,∵d=a7﹣a6<0,故A正确;而C选项S9>S5,即a6+a7+a8+a9>0,可得2(a7+a8)>0,由结论a7=0,a8<0,显然C选项是错误的.∵S5<S6,S6=S7>S8,∴S6与S7均为Sn的最大值,故D正确;故选C.6.如图所示,E是正方形ABCD所在平面外一点,E在面ABCD上的正投影F恰在AC上,FG∥BC,AB=AE=2,∠EAB=60°,有以下四个命题:(1)CD⊥面GEF;(2)AG=1;(3)以AC,AE作为邻边的平行四边形面积是8;(4)∠EAD=60°.其中正确命题的个数为()A.1B.2C.3D.4【考点】平面与平面垂直的判定.【分析】连结EG,通过证明AB⊥平面EFG得出CD⊥平面EFG,在直角三角形AEG中求出AG,EF,求出三角形ACE的面积,根据AG判断出F的位置,利用全都三角形判断∠EAD.【解答】解:连结EG,(1)∵EF⊥平面ABCD,AB⊂平面ABCD,∴EF⊥AB,∵FG∥BC,BC⊥AB,∴AB⊥FG,又EF⊂平面EFG,FG⊂平面EFG,EF∩FG=F,第8页(共19页)∴AB⊥平面EFG,∵AB∥CD,∴CD⊥平面EFG.故(1)正确.(2)∵AB⊥平面EFG,∴AB⊥EG,∵∠EAB=60°,AE=2,∴AG=AE=1,故(2)正确.(3))∵AG=1=,∴F为AC的中点.∵AE=2,AC==2,AF==,∴EF==.∴S△ACE===2,∴以AC,AE作为邻边的平行四边形面积为2S△ACE=4,故(3)错误;(4)过F作FM⊥AD于M,则AM=1,由(1)的证明可知AD⊥平面EFM,故而AD⊥EM,∴Rt△EAG≌Rt△EAM,∴∠EAM=∠EAG=60°,故(4)正确.故选:C7.下列命题中,正确的命题个数为()①△ABC的三边分别为a,b,c,则该三角形是等边三角形的充要条件为a2+b2+c2=ab+ac+bc;②数列{an}的前n项和为Sn,则Sn=An2+Bn是数列{an}为等差数列的充要条件;③在数列{an}中,a1=1,Sn是其前n项和,满足Sn+1=Sn+2,则{an}是等比数列;④已知a1,b1,c1,a2,b2,c2都是不等于零的实数,关于x的不等式a1x2+b1x+c1>0和a2x2+b2x+c2>0的解集分别为P,Q,则==是P=Q的充分必要条件.A.1B.2C.3D.4【考点】命题的真假判断与应用.【分析】①根据等边三角形的性质结合充分条件和必要条件的定义进行判断,②根据等差数列的定义和性质进行判断,③根据数列项和前n项和的关系,结合等比数列的定义进行判断.④举反例进行判断即可.第9页(共19页)【解答】解:①若a=b=c,则a2+b2+c2=ab+ac+bc成立,反之若a2+b2+c2=ab+ac+bc,则2(a2+b2+c2)=2(ab+ac+bc),整理得(a﹣b)2+(a﹣c)2+(b﹣c)2=0,当且仅当a=b=c时成立故充分性成立,故①正确;②当n=1时,a1=A+B;当n≥2时,an=Sn﹣Sn﹣1=2An+B﹣A,显然当n=1时也满足上式,∴an﹣an﹣1=2A,∴{an}是等差数列.反之,若数列{an}为等差数列,∴Sn=na1+d=n2+(a1﹣)n,令A=,B=a1﹣,则Sn=An2+Bn,A,B∈R.综上,“Sn=An2+Bn,是“数列{an}为等差数列”的充要条件.故②正确,③在数列{an}中,a1=1,Sn是其前n项和,满足Sn+1=Sn+2,则当n≥2时,Sn=Sn﹣1+2,两式作差得Sn+1﹣Sn=Sn+2﹣Sn﹣1﹣2,即an+1=an,即=,(n≥2),当n=1时,S2=S1+2,即a1+a2=a1+2,即a2=﹣a1+2=2﹣=,
本文标题:北京市首师大附中2015-2016学年高一(下)期末数学试卷(解析版)
链接地址:https://www.777doc.com/doc-2623393 .html