您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 几何组成分析习题及答案
题15.7试对图示体系进行几何组成分析。解(1)计算自由度。体系的自由度为W-2j-6-r=2×8-9-7=0(2)几何组成分析。首先把三角形ACD和BCE分别看做刚片I和刚片Ⅱ,把基础看做刚片I,则三个刚片用不共线的三个铰A、B、C分别两两相联,组成一个大的刚片。在这个大的刚片上依次增加二元体12、DGF、CHG、EIH、IJ3。最后得知整个体系为几何不变,且无多余约束。题15.8试对图示体系进行几何组成分析。解(1)计算自由度。体系的自由度为W-3m-2h-r=3×6-2×7—4=0(2)几何组成分析。刚片AF和AB由不共线的单铰A以及链杆DH相联,构成刚片I,同理可把BICEG部分看做刚片Ⅱ,把基础以及二元体12、34看作刚片I,则刚片I、Ⅱ、Ⅲ由不共线的三个铰F、B、G两两相联,构成几何不变体系,且无多余约束。题15.9试对图示体系进行几何组成分析。解(1)计算自由度。体系的自由度为W-3m-2h-r=3×14-2×19-4一O(2)几何组成分析。在刚片HD上依次增加二元体DCJ、CBI、BAH构成刚片I,同理可把DMG部分看做刚片Ⅱ,把基础看做刚片I,则刚片I、Ⅱ、Ⅲ由不共线的单铰D,虚铰N、O相联,构成几何不变体系,且无多余约束。题15.10试对图示体系进行几何组成分析。解(1)计算自由度。体系的自由度为W-2j—b-r=2×7—11-3一O(2)几何组成分析。由于AFG部分由基础简支,所以可只分析AFG部分。可去掉二元体BAC只分析BFGC部分。把三角形BDF、CEG分别看做附片I和I,刚片I和I由三根平行的链杆相联,因而整个体系为瞬变。题15.11试对图示体系进行几何组成分析。解(1)计算自由度。体系的自由度为W-2j-6-r=2×9-13—5一O(2)几何组成分析。首先在基础上依次增加二元体12、AE3、AFE、ABF、FI4,成一个大的刚片I。其次,把CDHG部分看做刚片Ⅱ,刚片I、Ⅱ由三根共点的链杆BC、IG、5相联,因而整个体系为瞬变。题15.12试对图示体系进行几何组成分析。解(1)计算自由度。体系的自由度为W一2j-6-r=2×7-11-3一O(2)几何组成分析。由于ABCDEF部分由基础简支,所以可只分析ABCDEF部分。把三角形ABD看做刚片I,BCF看做刚片I,杆件GE看做刚片Ⅲ,则三个刚片由不共线的单铰B,虚铰Ol、02分别两两相联,构成几何不变体系,且无多余约束。题15.13试对图示体系进行几何组成分析。解(1)计算自由度。体系的自由度为W=2j-6-r’=2×6—8-4=0(2)几何组成分析。把三角形CDF看做刚片I,杆件AB看做刚片Ⅱ,基础和二元体23看做刚片Ⅲ。刚片I和刚片Ⅱ由链杆BC、AD相联,相当于虚铰D;刚片I和刚片Ⅲ由链杆CE、4相联,相当于虚铰Ol;刚片Ⅱ和Ⅲ由链杆EB、1相联,相当于一个虚铰,三个虚铰不共线,因此构成几何不变体系,且无多余约束。题15.14试对图示体系进行几何组成分析。解(1)计算自由度。体系的自由度为W-2j-b-r=2×12-21-3—0(2)几何组成分析。由于ABCGLKD部分由基础简支,所以可只分析ABCGLKD部分。在三角形ADE上依次增加二元体ABE、BFE、BCF、CGF、FHE组成刚片I。将三角形HJI看做刚片Ⅱ,杆件KL看做刚片Ⅲ。刚片I和刚片Ⅱ由单铰H相联;刚片Ⅱ和Ⅲ由链杆KI和JL相联,即在H点由虚铰相联;刚片I和刚片Ⅲ由链杆EK、FL相联,即在无穷远处由虚铰相联显然,这三个铰共线,因而整个体系为瞬变。;B题15.15试对图示体系进行几何组成分析。解(1)计算自由度。体系的自由度为W=3m-2h-r=3×7-2×9-3=O(2)几何组成分析。由于ACEFG部分由基础简支,所以可只分析ACEFG部分。在杆件ABC上增加二元体BGA构成刚片I,同理可把CDEF部分看做刚片Ⅱ,刚片I和刚片I由不共线的单铰C及链杆GF相联,因而整个体系为几何不变,且无多余约束。题15.16试对图示体系进行几何组成分析。解(1)计算自由度。体系的自由度为W=3m一2h-r=3×9—2×13-3=-2(2)几何组成分析。由于ADEFG部分由基础简支,所以可只分析ADEFG部分。把三角形AED看做刚片I,杆BE看做多余约束;把三角形AFG看做刚片I,杆CF看做多余约束。刚片I和刚片Ⅱ由不共线的铰A及链杆EF相联,因而整个体系为几何不变,且有两个多余约束。题15.17试对图示体系进行几何组成分析。解(1)计算自由度。体系的自由度为W=2j-b-r=2×9-15-3=0(2)几何组成分析。由于ADIHGFEB部分由基础简支,所以可只分析ADIHGFEB部分。在三角形BEF上依次增加二元体BCE、CGF组成刚片I,同理可把CDIH部分看做刚片Ⅱ。刚片I和刚片I由不共线的铰C及链杆GH相联,构成一个更大的刚片,然后再增加二元体BAD。最后得知整个体系为几何不变,且无多余约束。题15.18试对图示体系进行几何组成分析。解(1)计算自由度。体系的自由度为W=3m-2h-r=3×6-2×8-3=-1(2)几何组成分析。由于ABCDFE部分由基础简支,所以可只分析ABCDFE部分。在杆件ABCD上依次增加二元体AEB、CFD构成几何不变体系,链杆EF可看做多余约束。因而整个体系为几何不变,且有一个多余约束。.题15.19试对图示体系进行几何组成分析。解(1)计算自由度。体系的自由度为W=2j-b-r=2×6-8—4=O(2)几何组成分析。把三角形BCE看做刚片I,杆件DF看做刚片Ⅱ,基础上增加二元体12看做刚片I。刚片Ⅱ和刚片Ⅲ由链杆AD、3相联,即由虚铰F相联;I刚片I和刚片I由链杆BD、EF相联,交点在无穷远处;刚片I和刚片I由链杆AB、4相联,即由虚铰C相联;显然三铰在一条直线上,因而整个体系为瞬变。题15.20试对图示体系进行几何组成分析。解(1)计算自由度。体系的自由度为W=2j-b-r=2×8-13-3=O(2)几何组成分析。首先在三角形AEF上依次增加二元体ABF、BCF、CGF组成刚片I,而杆件BG可看做一个多余约束。其次,去掉二元体CDH、GH3。把基础上增加二元体12看做刚片Ⅱ,则刚片I和刚片1只用铰E相连,因而整个体系为几何可变,但在BCGF部分有一个多余约束。题15-21试对图示体系进行几何组成分析。解(1)计算自由度。体系的自由度为W=2j-6-r=2×9-14-4=O(2)几何组成分析。首先在体系上依次去掉二元体DAB、BCF、DBF不改变原体系的几何组成性质,所以下面只分析DEF以下部分即可。把三角形EFI看做刚片I;把杆件DH看做刚片Ⅱ;把基础上增加二元体12看做刚片I。刚片I和刚片Ⅱ由虚铰F相联;刚片I和刚片Ⅲ由链杆GE及链杆4相连,交点在CI直线上;刚片I和刚片Ⅲ由平行链杆DG及链杆3相联,由于链杆DG、3和直线CI平行,且三直线将在无穷远处相交,所以三个虚铰在同一直线上,因而整个体系为瞬变。题15.22试对图示体系进行几何组成分析。解(1)计算自由度。体系的自由度为W=3m一2h一r=3×10-2×14=2(2)几何组成分析。该体系没有和基础相联,只需要分析其内部几何性质。杆件AH和杆件HJ由不共线单铰H和链杆相联构成刚片I;同理可把DMJ部分看做刚片Ⅱ;再把折杆ABCD和二元体BFC看做刚片Ⅲ。刚片I、Ⅱ、I由三个不共线的单铰A、J、D两两相联,构成几何不变体系,链杆FJ可看做多余约束。因而整个体系内部为几何不变,且有一个多余约束。题15.23试对图示体系进行几何组成分析。解(1)计算自由度。体系的自由度为W=3m-2h-r=3×4—2×4-4=0(2)几何组成分析。把曲杆ACF看做刚片I;曲杆BDE看做刚片Ⅱ,基础和二元体12、34看做刚片Ⅲ。刚片I、Ⅱ、Ⅲ由不共线的三铰A、B、G两两相联,因而‘整个体系为几何不变,且无多余约束。题15.24试对图示体系进行几何组成分析。解体系的自由度为W=3m-2h-r=3×4-2×3-5=1体系缺少足够的约束,为几何可变体系。题15.25试对图示体系进行几何组成分析。解(1)计算自由度。体系的自由度为W=3m-2h-r=3×2-2×1-4=0(2)几何组成分析。把ABD部分看做刚片I,BCE部分看做刚片Ⅱ,基础看做刚片I。刚片I、Ⅱ由单铰B相联,刚片Ⅱ和Ⅲ由链杆3、4相联(即在两杆轴线的点处用一虚铰相联),刚片I和刚片Ⅲ由链杆1、2相联(即在两杆轴线的交点处用一虚铰相联),显然,这三个铰不在一条直线上,因而整个体系为几何不变,且无多余约束。题15.26试对图示体系进行几何组成分析。解(1)计算自由度。体系的自由度为W=3m-2h-r=3×9-2×10-7=O(2)几何组成分析。首先在体系上依次去掉二元体EAB、CDH、IEF、GHL、112、6L7,不改变原体系的几何组成性质,所以下面只分析JBCK和基础部分即可。把折杆JBCK看做刚片I;把基础看做刚片Ⅱ。刚片I和刚片Ⅱ由不共点的三根链杆3、4、5相联,因而整个体系为几何不变,且无多余约束。题15.27试对图示体系进行几何组成分析。解(1)计算自由度。体系的自由度为W=2j-b-r=2×9-14-4=O(2)几何组成分析。首先在三角形GHE上依次增加二元体GKH、KLH,把EGKLH部分看做刚片I,同理把LMJFI部分看做刚片Ⅱ,把基础看做刚片Ⅲ,则三个刚片用不共线的三个铰G、L、J分别两两相联,因而整个体系为几何不变,且无多余约束。题15.28试对图示体系进行几何组成分析。解(1)计算自由度。体系的自由度为W=2j-b-r=2×13-20-6=0.(2)几何组成分析。首先在体系上依次去掉二元体JAB、BCD、DEM、FBG、KFG、KGH、HDI、LHI不改变原体系的几何组成性质,所以下面只分析余下部分即可。杆件JK由三个不共点的链杆1、2、3与基础相连,组成刚片I;杆件LM由三个不共点的链杆4、5和KL与刚片I相联,组成更大的刚片,但链杆6为一多余约束。杆件IL与更大的刚片只由一个单铰相连,缺少足够的约束,因而整个体系为几何可变。题15.29试对图示体系进行几何组成分析。解计算自由度。体系的自由度为W-2j-6-r=2×5-6-3=1体系缺少足够的约束,为几何可变体系。题15.30试对图示体系进行几何组成分析。解(1)计算自由度。体系的自由度为W=3m-2h-rXXEX3X0=3×3-2×2-5=O(2)几何组成分析。把折杆ACD看做刚片I,折杆CE看做刚片I,基础看做刚片Ⅲ。刚片I、Ⅱ由单铰C相联,刚片Ⅱ和Ⅲ由链杆4、5相联(即用铰E相联),刚片I和刚片Ⅲ由链杆2、3相联(即用铰D相联),显然,这三个铰不在一条直线上,刚片I、Ⅱ、Ⅲ构成一个大的刚片。刚片BA由不共线的铰A和链杆1与上述大的刚片相联,因而整个体系为几何不变,且无多余约束。题15.31试对图示体系进行几何组成分析。解(1)计算自由度。体系的自由度为W-3m-2h-r=3×3-2×3-6一一3’(2)几何组成分析。由于支座A为固定端支座,可把折杆ABCE和基础作为刚片I(铰E为多余约束),把折杆BD看做刚片Ⅱ,两个刚片由不共线的铰ASB和链杆CD相联。链杆DF为多余约束。因而整个体系为几何不变,有三个多余约束。题15.32试对图示体系进行几何组成分析。解(1)计算自由度。体系的自由度为W=3m-2h-厂3×4—2×4-4=0(2)几何组成分析。首先在基础上依次增加二元体HDE、DCG、CBF构成刚片I,再把折杆AC看做刚片Ⅱ,折杆AB看做刚片Ⅲ。刚片I和Ⅱ由铰c相联,刚和由铰A相联,刚片I和刚片Ⅲ由铰B相联,显然,这三个铰不在一条直线上,因而整个体系为几何不变,且无多余约束。题15-33,试对图示体系进行几何组成分析。解(1)计算自由度。体系的自由度为W-2j-b-r=2×10-18-4=-2(2)几何组成分析。首先在三角形EJI上依次增加二元体EDI、DCI、CHI、CBH、CGH、BAG、BFG,组成刚片I(链杆AF为多余约束),把基础看做刚片Ⅱ,则两个刚片用三
本文标题:几何组成分析习题及答案
链接地址:https://www.777doc.com/doc-2639642 .html