您好,欢迎访问三七文档
1.简述真核生物的染色体结构,它们是如何组装的?有几种组蛋白参与核小体的形成?真核生物的染色体十分复杂,具有不同层次的组装结构,染色质分为常染色质和异染色质两种。在常染色质中DNA的压缩比为1000—2000,相对比较伸展,主要为单拷贝基因和中等重复序列。异染色质是指在间期核中DNA折叠压缩程度较高,约8000-10000倍,以凝集状态存在,对碱性染料着色较深的区域。在着丝粒、端粒、次缢痕以及染色体的某些节段,由较短和高度重复的DNA序列组成永久性的异染色质。另一些染色质区域随细胞分化而进一步折叠压缩,以封闭基因活性,称为功能性异染色质。染色质的基本结构单位是核小体。核小体是由组蛋白核心和盘绕其上的DNA构成。核心由组蛋白H2A、H2B、H3和H4各2分子组成,所以是一个八聚体。在DNA分子上的每一条链都含有合成它的互补链所必需的全部遗传信息。在复制过程中首先是双链解旋并分开,之后以每条链作为模板在其上合成新的互补链,其结果是由一条链可以形成互补的两条链。这样新形成的两条双链DNA分子与原来DNA分子的碱基顺序完全一样。在此过程中,每个子代分子的一条链来自亲代DNA,另一条链则是新合成的,这种方式称为半保留复制。在DNA复制过程中每个复制叉中的前导链连续复制,而后随链是以反方向合成不连续的短片段。最后再由连接酶连接成连续的DNA序列,这种复制方式称为半不连续复制。半保留复制的生物学意义是,在半保留复制中碱基配对是核酸分子间传递遗传信息的结构基础。无论是复制、转录或逆转录,在形成双链螺旋分子时都是通过碱基配对来完成的。这种复制机制还说明了DNA分子在代谢上的稳定性,经过许多代的复制,DNA多核苷酸链仍可保持完整,并存在于后代而不被分解。与细胞的其他成分相比这种稳定性与它的可遗传功能是相符合的。9.简述以下DNA复制酶与蛋白质因子的体系,DNA聚合酶Ⅰ、Klenow片段、DNA聚合酶Ⅱ、DNA聚合酶Ⅲ、γ复合物、夹子装置器、DNA连接酶、SSB、HU、DnaA、DnaB、DnaC、两类拓扑异构酶DNA聚合酶Ⅰ是多功能酶。可催化以下几种反应:①通过核苷酸聚合反应,使DNA链沿3ˊ→5ˊ方向延长(聚合酶活性);②由3ˊ端水解DNA链(3ˊ→5ˊ核酸外切酶活性);③由5ˊ端水解DNA链(3ˊ→5ˊ核酸外切酶活性);④由3ˊ端使DNA链发生焦磷酸解;⑤无机焦磷酸与脱氧核糖核苷三磷酸之间的焦磷酸基交换。焦磷酸解是聚合反应的逆反应,焦磷酸交换反应由前两个反应连续重复多次引起。因此,DNA聚合酶I兼有聚合酶、3ˊ→5ˊ核酸外切酶和5ˊ→3ˊ核酸外切酶的活性。在聚合酶活性中心,与这些功能相关的结合位置分布十分精巧而灵活。DNA聚合酶Ⅱ为多亚基酶,其聚合酶亚基由一条相对分子质量为88000的多肽链组成。这个酶的活力比DNA聚合酶I高。NA聚合酶Ⅱ具有3ˊ→5ˊ核酸外切酶活性,但无5ˊ→3ˊ活性。DNA聚合酶Ⅱ也不是复制酶,而是一种修复酶。DNA聚合酶Ⅲ是由多个亚基组成的蛋白质,亚基很容易解离,全酶(holoenzyme)由α、β、γ、δ、δ′、ε、θ、τ、χ和ψ10种亚基所组成,除合成速度比聚合酶I快外其他性质与聚合酶I基本相同。DNA聚合酶Ⅲ的其他许多性质都表明它是DNA复制酶。DNA聚合酶Ⅰ被蛋白酶切开得到的大片段称为Klenow片段,具有催化DNA聚合作用和3ˊ→5ˊ校对功能。聚合酶III中的γ亚基是一种依赖DNA的ATP酶,全酶中的γ复合物由6个亚基(γ2δδ′χψ)构成,主要功能是协同β亚基嵌住模板DNA,又称夹子装置器。3类RNA聚合酶都有几种共同的亚基:根据其结构与功能,可以分为核心亚基、共同亚基和非必须亚基。帽子结构的功能(1)对翻译起识别作用------为核糖体识别RNA提供信号,Cap0的全部都是识别的重要信号,Cap1,2的甲基化能增进识别(2)增加mRNA的稳定性,使5’端免遭外切核酸酶的攻击(3)有助于mRNA越过核膜,进入胞质poly(A)的功能(1)可能与核质转运有关(2)增强mRNA稳定性(3)增强可翻译能力9、Lac操纵子调控机制总结当低葡萄糖而高乳糖时,部分乳糖在β-半乳糖苷酶作用下转变为异乳糖,异乳糖可作为诱导物和有活性阻遏蛋白结合,使阻遏蛋白失活,不能结合O,RNA聚合酶顺利结合启动子,起始转录利用乳糖的酶;同时,由于没有葡萄糖存在,胞内cAMP浓度高,大量的cAMP-CAP复合物结合在CAP位点,极大的促进下游结构基因转录效率,β-半乳糖苷酶、通透酶和转乙酰酶的含量高,这时候,细菌就分解乳糖为葡萄糖和半乳糖,葡萄糖直接作为碳源,半乳糖利用gal操纵子调控的酶转变为葡萄糖,由于阻遏物不断合成,当乳糖被消耗完毕后,有活性的阻遏蛋白可重新建立阻遏状态,酶合成被抑制,经过一段延迟期后,逐渐被稀释。当高葡萄糖和高乳糖时,乳糖可作为诱导物和有活性阻遏蛋白结合,使阻遏蛋白失活,不能结合O,RNA聚合酶可顺利结合P起始转录分解利用乳糖的酶;同时,但是由于葡萄糖存在,胞内cAMP浓度极低,没有cAMP-CAP结合在CAP位点,转录虽然可以起始但还是效率极低,β-半乳糖苷酶、通透酶和转乙酰酶的含量非常少,这时候,细菌就利用葡萄糖作为碳源,而不利用乳糖。色氨酸操纵子调节机制当环境能提供足够浓度的色氨酸时,调节蛋白R与辅阻遏物-色氨酸结合,构象变化而活化,就能够与操纵基因Otrp特异性亲和结合,阻遏结构基因的转录起始。因此这是属于一种可阻遏的负调控操纵元,即操纵子通常是开放转录的,有效应物(色氨酸为辅阻遏物)作用时则阻遏关闭转录;同时,色氨酸浓度高,tRNAtrp-色氨酸浓度随之升高,核糖体沿mRNA翻译移动的速度加快,占据1和2区域,1和2、2和3配对的机会减少,3和4配对就形成具有终止结构C茎环,RNA聚合酶终止转录,于是即使已经开始的转录就减弱,这样,在有色氨酸存在时,大肠杆菌利用外界提供的色氨酸,而很快关闭其体内色氨酸合成途径,直接利用外界trp。在色氨酸浓度未达到能起阻遏作用时,调节蛋白R未与辅阻遏物-色氨酸结合,构象处于失活状态,不能与操纵基因Otrp特异性亲和结合,结构基因的转录就可起始进行。同时,Ptrp起始转录后,RNA聚合酶沿DNA转录合成mRNA,同时,核糖体就结合到新生成的mRNA核糖体结合位点上,开始翻译。tRNAtrp-色氨酸量也少,使核糖体沿mRNA翻译移动的速度慢,赶不上RNA聚合酶沿DNA移动转录的速度,这时核糖体占据前导序列1区域,使不能生成发夹结构A,于是2和3区域配对就形成发夹结构B,阻止了C生成终止信号的结构,RNA聚合酶得以沿DNA前进,继续去转录,编码合成色氨酸的酶。1、真核生物所有的mRNA都有polyA结构。(X)组蛋白的mRNA没有2、由于密码子存在摇摆性,使得一种tRNA分子常常能够识别一种以上同一种氨基酸的密码子。(√)3、大肠杆菌的连接酶以ATP作为能量来源。(X)以NAD作为能量来源4、tRNA只在蛋白质合成中起作用。(X)tRNA还有其它的生物学功能,如可作为逆转录酶的引物5、DNA聚合酶和RNA聚合酶的催化反应都需要引物。(X)RNA聚合酶的催化反应不需要引物6、真核生物蛋白质合成的起始氨基酸是甲酰甲硫氨酸(X)真核生物蛋白质合成的起始氨基酸是甲硫氨酸7、质粒不能在宿主细胞中独立自主地进行复制(X)质粒具有复制起始原点,能在宿主细胞中独立自主地进行复制8、RNA因为不含有DNA基因组,所以根据分子遗传的中心法则,它必须先进行反转录,才能复制和增殖。(X)不一定,有的RNA病毒可直接进行RNA复制和翻译9、细菌的RNA聚合酶全酶由核心酶和ρ因子组成。(X)10、核小体在复制时组蛋白八聚体以全保留的方式传递给子代。(√)11、色氨酸操纵子中含有衰减子序列(√)12、SOS框是所有din基因(SOS基因)的操纵子都含有的20bp的lexA结合位点。(√)1、在真核基因表达调控中,(B)调控元件能促进转录的速率。A、衰减子B、增强子C、repressorD、TATABox2、核基因mRNA、的内元拼接点序列为(D)。A、AG…GUB、GA…UGC、UG…GAD、GU…AG3、下列何种因子不会诱变DNA(D)A、亚硝酸B、UVC、丫啶橙D、饱和脂肪乳剂4、RNA聚合酶1的功能是(C)A转录tRNA和5sRNA基因;B转录蛋白质基因和部分snRNA基因;C只转录rRNA基因;D转录多种基因5、如果一段DNA产生了+1的译码突变,可以加以校正的是(D)A突变型氨酰tRNA合成酶B有突变型反密码子的tRNAC有切割一个核苷酸的酶D有四个碱基长的反密码子的tRNA6、参与重组修复的酶系统中,具有交换DNA链活性的是(D)ADNA聚合酶IBRecB蛋白CRecC蛋白DRecA蛋白7、原核RNApol识别的启动子位于:(A)A、转录起始点的上游;B、转录起始点的下游;C、转录终点的下游;D、无一定位置;8、在研究原核翻译过程中,可用不同的抑制剂研究翻译诸阶段,其中链霉素可抑制:(C)A、起始B、延长C、肽基有P位移至A位D、核糖体移位9、在什么情况下,乳糖操纵子的转录活性最高(A)A高乳糖,低葡萄糖B高乳糖,高葡萄糖C低乳糖,低葡萄糖D低乳糖,高葡萄糖10、设密码子为5’XYZ3’,反密码子为5’ABC3’,则处于摆动位置上的碱基为(C)AX-CBY-BCZ-A3、详述大肠杆菌色氨酸操纵子的调控机理。(12分)答:大肠杆菌色氨酸操纵子的转录受阻遏和衰减两种机制的控制,前者通过阻遏蛋白和操纵基因的作用控制转录的起始,后者通过前导序列形成特殊的空间结构控制转录起始后是否进行下去。1)色氨酸操纵子的可阻遏系统:在阻遏系统中,起负调控的调节基因的产物是一个无活性的阻遏蛋白,色氨酸是辅阻遏物;当色氨酸不足时,阻遏蛋白无活性,不能和操纵基因结合,色氨酸操纵子能够转录;当色氨酸充足时,阻遏蛋白和它结合而被激活,从而结合到操纵基因上,而色氨酸操纵子的操纵基因位于启动基因内,因此,活性阻遏物的结合排斥了RNA聚合酶的结合,从而抑制了结构基因的表达。2)色氨酸操纵子的衰减调控在色氨酸操纵子的操纵基因和第一个结构基因之间有一段前导序列L,在前导序列上游部分有一个核糖体结合位点,后面是以起始密码AUG开头的14个氨基酸的编码区,编码区有两个紧密相连的色氨酸密码子,后面是一个终止密码子UGA,在开放阅读框下游有一个不依赖ρ因子的终止子,是一段富含G/C的回文序列,可以形成发夹结构,因此可以在此处终止转录。另外前导序列包含4个能进行碱基互补配对的片断1区、2区、3区和4区。它们能以1、2和3、4或2、3的方式进行配对,从而使前导序列形成二级结构的变化。在细菌中,翻译与转录偶连,一旦RNA聚合酶转录出trpmRNA中的前导肽编码区,核糖体便立即结合上去翻译这一序列。当细胞中缺乏色氨酸时,Trp-tRNATrp的浓度很低,核糖体翻译前导肽至两个连续的色氨酸密码子处就陷入停顿,这时核糖体只占据1区,由RNA聚合酶转录的2区和3区便可配对,4区游离在外,这样就不能形成终止子结构,RNA聚合酶就可以一直转录下去,最后完成trp全部结构基因的转录,得到完整的mRNA分子。当细胞中存在色氨酸时,就有一定浓度的Trp-tRNATrp,核糖体便能顺利通过两个连续的色氨酸密码子而翻译出整个前导肽,直到前导肽序列后面的终止密码子UGA处停止。此时,核糖体占据了1区和2区,结果3区和4区配对,形成转录终止子结构,使RNA聚合酶终止转录。实现衰减调控的关键在于时间和空间上的巧妙安排。在空间上,两个色氨酸密码子的位置很重要,不可随意更改;在时间上,核糖体停顿于两个色氨酸密码子上时,序列4应当还未转录出来1.简述乳糖操纵子的正负调控机制答案要点:包括正负调控两种(—)阻遏蛋白的负调控①当细胞内有诱导物时,诱导物结合阻遏蛋白,此刻聚合酶与启动子形成开放式启动子复合物转录乳糖操纵子结构基因。②当无诱导物时,阻遏蛋白结合与启动子与蛋白质部分重叠不转录。(=)CAP正调控①当细胞内缺少葡萄糖时ATP→CAMP结合,CRP生成CAP与CA
本文标题:分子生物学考试重点
链接地址:https://www.777doc.com/doc-2642142 .html