您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 新课标高中数学必修2知识点总结经典
新课标高中数学必修2知识点总结经典第一章空间几何体1.1空间几何体的结构1、棱柱定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱'''''EDCBAABCDE几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。2、棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥'''''EDCBAP几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。3、棱台定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如四棱台ABCD—A'B'C'D'几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点4、圆柱定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。5、圆锥定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。6、圆台定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。球体定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。※空间几何体的结构特征:面(侧面、上底面、下底面)、棱、顶点、轴1.2空间几何体的三视图和直观图1、中心投影与平行投影中心投影:把光由一点向外散射形成的投影叫做中心投影。平行投影:在一束平行光照射下形成的投影叫做平行投影。2、三视图正视图:从前往后侧视图:从左往右俯视图:从上往下画三视图的原则:长对齐、高对齐、宽相等3、直观图:斜二测画法斜二测画法的步骤:(1).平行于坐标轴的线依然平行于坐标轴;(2).平行于y轴的线长度变半,平行于x,z轴的线长度不变;(3).画法要写好。用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图1.3空间几何体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和。(2)特殊几何体表面积公式(c为底面周长,h为高,'h为斜高,l为母线)chS直棱柱侧面积rhS2圆柱侧'21chS正棱锥侧面积rlS圆锥侧面积')(2121hccS正棱台侧面积lRrS)(圆台侧面积lrrS2圆柱表lrrS圆锥表22RRlrlrS圆台表(3)柱体、锥体、台体的体积公式VSh柱2VShrh圆柱13VSh锥hrV231圆锥''1()3VSSSSh台''2211()()33VSSSShrrRRh圆台(4)球体的表面积和体积公式:V球=343R;S球面=24R第二章点、直线、平面之间的位置关系及其论证1、公理1:如果一条直线上两点在一个平面内,那么这条直线在此平面内,,AlBllAB公理1的作用:判断直线是否在平面内2、公理2:过不在一条直线上的三点,有且只有一个平面。若A,B,C不共线,则A,B,C确定平面推论1:过直线的直线外一点有且只有一个平面若Al,则点A和l确定平面推论2:过两条相交直线有且只有一个平面若mnA,则,mn确定平面推论3:过两条平行直线有且只有一个平面若mn,则,mn确定平面公理2及其推论的作用:确定平面;判定多边形是否为平面图形的依据。3、公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。,PPlPl且公理3作用:(1)判定两个平面是否相交的依据;(2)证明点共线、线共点等。lBAαBAαClαAlmαAmnαP·αLβ4、公理4:也叫平行公理,平行于同一条直线的两条直线平行.,abcbac5、定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。,1212aabb且与方向相同=,1212180aabb且与方向相反=作用:该定理也叫等角定理,可以用来证明空间中的两个角相等。6、线线位置关系:平行、相交、异面。,,,ababAab异面(1)没有任何公共点的两条直线平行(2)有一个公共点的两条直线相交(3)不同在任何一个平面内的两条直线叫异面直线7、线面位置关系:直线在平面内、平行、相交aaaA8、面面位置关系:平行、相交。9、线面平行:(即直线与平面无任何公共点)⑴判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。(只需在平面内找一条直线和平面外的直线平行就可以)////abaab证明两直线平行的主要方法是:①三角形中位线定理:三角形中位线平行并等于底边的一半;②平行四边形的性质:平行四边形两组对边分别平行;③线面平行的性质:如果一条直线平行于一个平面,经过这条直线的平面与这个平面相交,那么这条直线和它们的交线平行;aaabb④平行线的传递性:,abcbac⑤面面平行的性质:如果一个平面与两个平行平面相交,那么它们的交线平行;aabb⑥垂直于同一平面的两直线平行;aabb⑵直线与平面平行的性质:如果一条直线平行于一个平面,经过这条直线的平面与这个平面相交,那么这条直线和它们的交线平行;(上面的③)abbab'a'方向相反则∠1+∠2=180°方向相同则∠1=∠22121a'b'(1)a(2)a(3)aAbaA10、面面平行:(即两平面无任何公共点)(1)判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。,,ababAab(2)两平面平行的性质:性质Ⅰ:如果一个平面与两平行平面都相交,那么它们的交线平行;aabb性质Ⅱ:平行于同一平面的两平面平行;性质Ⅲ:夹在两平行平面间的平行线段相等;,,ACACBDBDABCD性质Ⅳ:两平面平行,一平面上的任一条直线与另一个平面平行;aaaa或11、线面垂直:⑴定义:如果一条直线垂直于一个平面内的任意一条直线,那么就说这条直线和这个平面垂直。⑵判定:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。,lmlnlmnAmn⑶性质Ⅰ:垂直于同一个平面的两条直线平行。aabb性质Ⅱ:垂直于同一直线的两平面平行ll12、面面垂直:⑴定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直。⑵判定:一个平面经过另一个平面的一条垂线,则这两个平面垂直。ll(只需在一个平面内找到另一个平面的垂线就可证明面面垂直)⑶性质:两个平面互相垂直,则一个平面内垂直于交线的直线垂直于另一个平面。证明两直线垂直和主要方法:①利用勾股定理证明两相交直线垂直;②利用等腰三角形三线合一证明两相交直线垂直;③利用线面垂直的定义证明(特别是证明异面直线垂直);④利用三垂线定理证明两直线垂直(“三垂”指的是“线面垂”“线影垂”,“线斜垂”)空间角及空间距离的计算1.异面直线所成角:使异面直线平移后相交形成的夹角,通常在两异面直线中的一条上取一点,过该点作另一条直线平行线,2.斜线与平面成成的角:斜线与它在平面上的射影成的角。如图:PA是平面的一条斜线,A为斜足,O为垂足,OA叫斜线PA在平面上射影,PAO为线面角。3.二面角:从一条直线出发的两个半平面形成的图形,如图为二面角l,二面角的大小指的是二面角的平面角的大小。二面角的平面角分别在两个半平面内且角的两边与二面角的棱垂直----,,lOAOBlOAlOBlAOB如图:在二面角中,O棱上一点,,,的平面角。且则为二面角a斜影线αPOA,POOAPAaPAaaOA图线线线如:是在平面上的射影又直且即:影垂直斜垂直,反之也成立。 ab如图:直线a与b异面,b//b,直线a与直线b的夹角为两异面直线与所成的角,异面直线所成角取值范围是(0,90]mlllm用二面角的平面角的定义求二面角的大小的关键点是:①确构成二面角两个半平面和棱;②明确二面角的平面角是哪个?而要想明确二面角的平面角,关键是看该角的两边是否都和棱垂直。(求空间角的三个步骤是“一找”、“二证”、“三计算”)5.点到平面的距离:指该点与它在平面上的射影的连线段的长度。如图:O为P在平面上的射影,线段OP的长度为点P到平面的距离求法通常有:定义法和等体积法等体积法:就是将点到平面的距离看成是三棱锥的一个高。如图在三棱锥VABC中有:SABCASBCBSACCSABVVVV第三章直线与方程3.1直线的倾斜角与斜率(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即tank。斜率反映直线与轴的倾斜程度。当90,0时,0k;当180,90时,0k;当90时,k不存在。②过两点的直线的斜率公式:)(211212xxxxyyk注意:(1)当21xx时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。3.2直线的方程①点斜式:)(11xxkyy直线斜率k,且过点11,yx注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。②斜截式:bkxy,直线斜率为k,直线在y轴上的截距为b③两点式:112121yyxxyyxx(1212,xxyy)直线两点11,yx,22,yx④截矩式:1xyab其中直线l与x轴交于点(,0)a,与y轴交于点(0,)b,即l与x轴、y轴的截距分别为,ab。⑤一般式:0CByAx(A,B不全为0)注意:○1各式的适用范围○2特殊的方程如:平行于x轴的直线:by(b为常数);平行于y轴的直线:ax(a为常数);(5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线0000CyBxA(00,BA是不全为0的常数)的直线系:000CyBxA(C为常数)(二)过定点的直线系(ⅰ)斜率为k的直线系:00xxkyy,直线过定点00,yx;(ⅱ)过两条直线0:1111CyBxAl,0:2222CyBxAl的交点的直线系方程为0222111CyBxACyBxA(为参数),其中直线2l不在直线系中。(6)两直线平行与垂直当111:bxkyl,222:bxkyl时,212121,//bbkkll;
本文标题:新课标高中数学必修2知识点总结经典
链接地址:https://www.777doc.com/doc-2649681 .html