您好,欢迎访问三七文档
第4单元二次函数与一元二次方程根的分布一、内容黄金组1.能应用不等式的有关知识,对一元二次方程的实根分布进行讨论.2.借助二次函数的图象进行实根分布的讨论,培养学生数形结合的思想.3.能将实根分布等价转化为不等式(组)的求解问题,体现等价转化的数学思想.二、要点大揭秘1.二次函数及图象设有一元二次函数y=ax2+bx+c(a≠0),判别式Δ=b2-4ac,当Δ>0时y=f(x)与x轴有二交点;当Δ=0时,y=f(x)与x轴仅有一交点;当Δ<0时,y=f(x)与x轴无交点.当Δ>0时,设y=f(x)图象与x轴两交点为x1<x2.一元二次函数y=f(x)与x轴交点x1,x2就是相应一元二次方程f(x)=0的两根.观察图象不难知道.图像为观察图象不难知道△=0,a>0,△=0,a<0当△<0时,y=f(x)图象与x轴无公共点,其图象为观察图象不难知道.a>0时,绝对不等式f(x)>0解为x∈R.a<0时,绝对不等式f(x)<0解为x∈R.2.讨论一元二次方程的根的分布情况时,往往归结为不等式(组)的求解问题,其方法有3种:(1)应用求根公式;(2)应用根与系数关系;(3)应用二次函数图象.在进行转化时,应保证这种转化的等价性.就这三种方法而言,应用二次函数图象和性质应是比较简捷的一种方法.设f(x)=ax2+bx+c(a>0),方程ax2+bx+x=0的个根为α,β(α≤β),m,n为常数,且n<m,方程根的分布无外乎两种情况:②α,β同居一区间时,不但要考虑端点函数值的符号,还要考虑三、好题解给你(1)(1)预习题1.设有一元二次函数y=2x2-8x+1.试问,当x∈[3,4]时,随x变大,y的值变大还是变小?由此y=f(x)在[3,4]上的最大值与最小值分别是什么?解:经配方有y=2(x-2)2-7∵对称轴x=2,区间[3,4]在对称轴右边,∴y=f(x)在[3,4]上随x变大,y的值也变大,因此ymax=f(4)=1.ymin=f(3)=-5.2.设有一元二次函数y=2x2-4ax+2a2+3.试问,此函数对称轴是什么?当x∈[3,4]时,随x变大,y的值是变大还是变小?与a取值有何关系?由此,求y=f(x)在[3,4]上的最大值与最小值.解:经配方有y=2(x-a)2+3.对称轴为x=a.当a≤3时,因为区间[3,4]在对称轴的右边,因此,当x∈[3,4]时,随x变大,y的值也变大.当3<a<4时,对称轴x=a在区间[3,4]内,此时,若3≤x≤a,随x变大,y的值变小,但若a≤x≤4,随x变大,y的值变大.当4≤a时,因为区间[3,4]在对称轴的左边,因此,当x∈[3,4]时,随x变大,y的值反而变小.根据上述分析,可知.当a≤3时,ymax=f(4)=2a2-16a+35.ymin=f(3)=2a2-12a+21.当3<a<4时,ymin=f(a)=3.其中,a≤3.5时,ymax=f(4)=2a2-16a+35.a≥3.5时,ymax=f(3)=2a2-12a+21.当a≥4时,ymax=f(3)=2a2-12a+21.ymin=f(4)=2a2-16a+35.(2)(2)基础题例1.设有一元二次方程x2+2(m-1)x+(m+2)=0.试问:(1)m为何值时,有一正根、一负根.(2)m为何值时,有一根大于1、另一根小于1.(3)m为何值时,有两正根.(4)m为何值时,有两负根.(5)m为何值时,仅有一根在[1,4]内?解:(1)设方程一正根x2,一负根x1,显然x1、x2<0,依违达定理有m+2<0.∴m<-2.反思回顾:x1、x2<0条件下,ac<0,因此能保证△>0.(2)设x1<1,x2>1,则x1-1<0,x2-1>0只要求(x1-1)(x2-1)<0,即x1x2-(x1+x2)+1<0.依韦达定理有(m+2)+2(m-1)+1<0.(3)若x1>0,x2>0,则x1+x2>0且x1,x2>0,故应满足条件依韦达定理有(5)由图象不难知道,方程f(x)=0在[3,4]内仅有一实根条件为f(3)·f(4)<0,即[9+6(m-1)+(m+2)]·[16+8(m-1)+(m+2)]<0.∴(7m+1)(9m+10)<0.例2.当m为何值时,方程有两个负数根?解:负数根首先是实数根,∴,由根与系数关系:要使方程两实数根为负数,必须且只需两根之和为负,两根之积为正.由以上分析,有即∴当时,原方程有两个负数根.(3)(3)应用题例1.m取何实数值时,关于x的方程x2+(m-2)x+5-m=0的两个实根都大于2?解:设f(x)=x2+(m-2)x+5-m,如图原方程两个实根都大于2所以当-5<m≤-4时,方程的两个实根大于2.例2.已知关于x方程:x2-2ax+a=0有两个实根α,β,且满足0<α<1,β>2,求实根a的取值范围.解:设f(x)=x2-2ax+a,则方程f(x)=0的两个根α,β就是抛物线y=f(x)与x轴的两个交点的横坐标,如图0<α<1,β>2的条件是:<1,β>2.例3.m为何实数时,关于x的方程x2+(m-2)x+5-m=0的一个实根大于2,另一个实根小于2.解:设f(x)=x2+(m-2)x+5-m,如图,原方程一个实根大于2,另一个实根小于2的充要条件是f(2)<0,即4+2(m-2)+5-m<0.解得m<-5.所以当m<-5时,方程的一个实根大于2,另一个实根小于2.(4)(4)提高题例1.已知函数的图象都在x轴上方,求实数k的取值范围.解:(1)当,则所给函数为二次函数,图象满足:,即解得:(2)当时,若,则的图象不可能都在x轴上方,∴若,则y=3的图象都在x轴上方由(1)(2)得:反思回顾:此题没有说明所给函数是二次函数,所以要分情况讨论.例2.已知关于x的方程(m-1)x2-2mx+m2+m-6=0有两个实根α,β,且满足0<α<1<β,求实数m的取值范围.解:设f(x)=x2-2mx+m2+m-6,则方程f(x)=0的两个根α,β,就是抛物线y=f(x)与x轴的两个交点的横坐标.如图,0<α<1<β的条件是解得例3.已知关于x的方程3x2-5x+a=0的有两个实根α,β,满足条件α∈(-2,0),β∈(1,3),求实数a的取值范围.解:设f(x)=3x2-5x+a,由图象特征可知方程f(x)=0的两根α,β,并且α∈(-2,0),β∈(1,3)的解得-12<a<0.四、课后演武场1.已知方程(m-1)x2+3x-1=0的两根都是正数,则m的取值范围是(B)A.B.C.D.2.方程x2+(m2-1)x+(m-2)=0的一个根比1大,另一个根比-1小,则m的取值范围是(C)A.0<m<2B.-3<m<1C.-2<m<0D.-1<m<13.已知方程有两个不相等的实数根,则k的取值范围是(C)A.B.C.D.4.已知关于x的方程3x2+(m-5)x+7=0的一个根大于4,而另一个根小于4,求实数m的取值范围.可知方程f(x)=0的一根大于4,另一根小于4的充要条件是:f(4)<0)5.已知关于x的方程x2+2mx+2m+3=0的两个不等实根都在区间(0,2)内,求实数m的取值范围.征可知方程f(x)=0的两根都在(0,2)内的充要条件是
本文标题:初中八年级数学试卷
链接地址:https://www.777doc.com/doc-2656740 .html