您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 初中数学几何综合试题
第1页共11页在中若则RtABC,C=90,cosB=23,sinA=.初中数学几何综合试题班级____学号____姓名____得分____一、单选题(每道小题3分共9分)1.下列各式中正确的是[]A.sin12=30B.tg1=45C.tg30=3D.cos60=122.如图,已知AB和CD是⊙O中两条相交的直径,连AD、CB那么α和β的关系是[]ABCD....121223.在一个四边形中,如果两个内角是直角,那么另外两个内角可以[]A.都是钝角B.都是锐角C.一个是锐角一个是直角D.都是直角或一个锐角一个钝角二、填空题(第1小题1分,2-7每题2分,8-9每题3分,10-14每题4分,共39分)1.人们从实践经验中总结出来的图形的基本性质,我们把它叫做_______.2.小于直角的角叫做______;大于直角而小于平角的角叫做________.3.已知正六边形外接圆的半径为R,则这个正六边形的周长为_______.4.5.如果圆的半径R增加10%,则圆的面积增加_____________.6.cossincossin.453060307.已知∠a=60°,∠AOB=3∠a,OC是∠AOB的平分线,则∠a=___∠AOC.8.等腰Rt△ABC,斜边AB与斜边上的高的和是12厘米,则斜边AB=厘米.第2页共11页9.已知:如图△ABC中AB=AC,且EB=BD=DC=CF,∠A=40°,则∠EDF的度数为________.10.在同一个圆中,当圆心角不超过180°时,圆心角越大,所对的弧______;所对的弦_______,所对弦的弦心距_______.11.如图,在直角三角形ABC中,∠C=90°,D、E分别是AB、AC中点,AC=7,BC=4,若以C为圆心,BC为半径做圆,则ED与⊙o的位置关系是:D在______,E在_____.12.在△ABC中,∠C=90°若a=5,则S△ABC=12.5,则c=_________,∠A=_________13.如图:CB⊥AB,CE平分∠BCD,DE平分∠CDA,∠1+∠2=90°求证:DA⊥AB证明:∵∠1+∠2=90°(已知)∠2=∠4,∠1=∠3(角平分线定义)∴∠3+∠4=90°(等量代换)∴∠ADC+∠BCD=180°(等量代换)AD∥BC()∵BC⊥AB(已知)∴AD⊥AB()14.圆外切四边形ABCD中,如果AB=2,BC=3,CD=8,那么AD=.三、计算题(第1小题4分,2-3每题6分,共16分)1.求值:cos245°+tg30°sin60°2.已知正方形ABCD,E是BC延长线上一点,AE交CD于F,如果AC=CE,求∠AFC的度数.3.如图:AB是半圆的直径,O为圆心,C是AB延长线上的一点,CD切半圆于,于,已知:,,求之长.DDEABEEBABCDBC152四、解答题(1-2每题4分,第3小题6分,第4小题7分,共21分)1.在△Rt△ABC中,∠C=90°,AB+AC=a,∠B=a,求AC.2.如图:铁路的路基的横截面是等腰梯形斜坡的坡度为为米基面宽米求路基的高,基底的宽及坡角的度数答案可带根号,AB13,33,AD2,AEBECB.():BE3.如图,某厂车间的人字屋架为等腰三角形,跨度AB=12米,∠A=30°,求中柱CD和上弦AC的长(答案可带根号)第3页共11页4.如图:已知AB∥CD,∠BAE=40°,∠ECD=62°,EF平分∠AEC,则∠AEF是多少度?五、证明题(第1小题4分,2-4每题7分,共25分)1.已知:如图,AB=AC,∠B=∠C.BE、DC交于O点.求证:BD=CE2.已知:如图,PA=PB,PA切⊙O于A,BCD交⊙O于C、D,PC延长交⊙O于E,连结BE交⊙O于F.求证:DF∥PB.3.如图:EG∥AD,∠BFG=∠E.求证:AD平分∠BAC.4.已知:如图,在∠AOB的两边OA,OB上分别截取OQ=OP,OT=OS,PT和QS相交于点C.求证:OC平分∠AOB第4页共11页六、画图题(第1小题2分,2-3每题4分,共10分)1.已知:如图,∠AOB求作:射线OC,使∠AOC=∠BOC.(不写作法)2.已知:两角和其中一个角的对边,求作:三角形ABC(写出已知,求作,画图,写作法)3.如图,要在河边修建一个水泵站,分别向张村,李村送水.修在河边什么地方,可使所用的水管最短?(写出已知,求作,并画图)第5页共11页初中数学几何综合试题答案一、单选题1.D2.D3.D二、填空题1.公理2.锐角,钝角3.6R4.235.0.21πR26.2127.238.89.70°10.越长,越长,越短11.在圆外,在圆内第6页共11页12.5245,13.同旁内角互补,两直线平行;一条直线和两条平行线中的一条垂直,也和另一条垂直14.7三、计算题1.解:原式()2233321212122.解:∵AC=CE则∠1=∠2又∵∠ACE=135°∴∠1=(180°-135°)÷2=22.5°故∠AFC=180°-(45°+22.5°)=112.5°3.解:如图,连结、,为直径∴又∵,∽∴·同理·而,∴··∴::∵切半圆于,∽,:::ADDBABADBDEABADEABDADABAEADADAEABBDBEABBEABADBDAEABBEABCCADBDCDDCDBAADCDBCDCBCADBDCDBC9015412121212222第7页共11页四、解答题1.解:在中则即即RtABCCACABACABACaACACa90111sinsinsinsinsinsinsin2.解:米米AEAEBCB3313326330()()()3.CDAC为米为米2343第8页共11页解:过E作EG∥AB∵∠BAE=40°∴∠AEG=40°同理∠CEG=62°∴∠AEC=102°又∵EF平分∠AEC∴∠AEF=51°五、证明题1.证:∵∠A=∠A,AB=AC,∠B=∠C.∴△ADC≌△AEB(ASA)∴AD=AE∵AB=AC,∴BD=CE.2.证明:如图,切⊙于,交⊙于、,又的公用∽又∥PAOABCDOCDAPPCPEPAPBPBPCPEPBPCPEPBBPCPBCPEBEEBDFBDFDFPB22114.第9页共11页证明:∵∠BFG=∠E=∠EFAEG∥AD∴∠E=∠DAC∠BFG=∠BAD∴AD平分∠BAC4.证:作射线OC,连结TS.在△SOP和△TOQ中,OS=OT,OQ=OP,∠AOB=∠BOA.∴△SOP≌△TOQ(SAS)∴∠1=∠2.∵OT=OS,∴∠OST=∠OTS∴∠3=∠4∴CT=CS∵OC=OC,OS=OT,CT=CS∴△OCS≌△OCT(SSS)∴∠5=∠6∴OC平分∠AOB六、画图题1.射线OC为所求.2.已知:∠a、∠b、线段a求作:△ABC使∠A=∠a,∠B=∠b,BC=a3.第10页共11页作法:1.作线段BC=a2.在BC的同侧作∠DBC=∠b,∠ECB=180-∠a-∠b,BD和CE交于A,则△ABC为所求的三角形.3.已知:直线a和a的同侧两点A、B.求作:点C,使C在直线a上,并且AC+BC最小.作法:1.作点A关于直线a的对称点A'.2.连结A'B交a于点C.则点C就是所求的点.证明:在直线a上另取一点C',连结AC,AC',A'C',C'B.∵直线a是点A,A'的对称轴,点C,C'在对称轴上∴AC=A'C,AC'=A'C'∴AC+CB=A'C+CB=A'B在△A'C'B中,∵A'B<A'C'+C'B∴AC+CB<AC'+C'B即AC+CB最小.第11页共11页
本文标题:初中数学几何综合试题
链接地址:https://www.777doc.com/doc-2659196 .html