您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 资本运营 > 初中数学函数知识点汇总
1函数及其图像一、平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。注意:x轴和y轴上的点,不属于任何象限。二、不同位置的点的坐标的特征1、各象限内点的坐标的特征第一象限(+,+)第二象限(-,+)第三象限(-,-)第四象限(+,-)2、坐标轴上的点的特征在x轴上纵坐标为0,在y轴上横坐标为,原点坐标为(0,0)3、两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线上x与y相等点P(x,y)在第二、四象限夹角平分线上x与y互为相反数4、和坐标轴平行的直线上点的坐标的特征位于平行于x轴的直线上的各点的纵坐标相同。位于平行于y轴的直线上的各点的横坐标相同。5、关于x轴、y轴或远点对称的点的坐标的特征点P与点p’关于x轴对称横坐标相等,纵坐标互为相反数点P与点p’关于y轴对称纵坐标相等,横坐标互为相反数点P与点p’关于原点对称横、纵坐标均互为相反数6、点到坐标轴及原点的距离点P(x,y)到坐标轴及原点的距离:(1)到x轴的距离等于y(2)到y轴的距离等于x(3)到原点的距离等于22yx三、函数及其相关概念1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值与它对应,那么就说x是自变量,y是x的函数。2、函数的三种表示法(1)解析法(2)列表法(3)图像法3、由函数解析式画其图像的一般步骤(1)列表(2)描点(3)连线4、自变量取值范围四、正比例函数和一次函数1、正比例函数和一次函数的概念一般地,如果bkxy(k,b是常数,k0),那么y叫做x的一次函数。特别地,当一次函数bkxy中的b为0时,kxy(k为常数,k0)。这时,y叫做x的正比例函数。22、一次函数的图像:是一条直线3、正比例函数的性质,,一般地,正比例函数kxy有下列性质:(1)当k0时,图像经过第一、三象限,y随x的增大而增大;(2)当k0时,图像经过第二、四象限,y随x的增大而减小。4、一次函数的性质,,一般地,一次函数bkxy有下列性质:(1)当k0时,y随x的增大而增大(2)当k0时,y随x的增大而减小5、正比例函数和一次函数解析式的确定确定一个正比例函数,就是要确定正比例函数定义式kxy(k0)中的常数k。确定一个一次函数,需要确定一次函数定义式bkxy(k0)中的常数k和b。解这类问题的一般方法是待定系数法。6、设两条直线分别为,1l:11ykxb2l:22ykxb若1212//llkk且12bb。若12121llkk7、平移:上加下减,左加右减。8、较点坐标求法:联立方程组五、反比例函数1、反比例函数的概念一般地,函数xky(k是常数,k0)叫做反比例函数。反比例函数的解析式也可以写成1kxy或xy=k的形式。自变量x的取值范围是x0的一切实数,函数的取值范围也是一切非零实数。2、反比例函数的图像是双曲线。3、反比例函数的性质(1)当k0时,函数图像的两个分支分别在第一、三象限。在每个象限内,y随x的增大而减小。(2)当k0时,函数图像的两个分支分别在第二、四象限。在每个象限内,y随x的增大而增大。(3)图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。(4)图像既是轴对称图形又是中心对称图形(5)图像上任意一点向坐标轴作垂线,与坐标轴所围成矩形面积等于|k|4、反比例函数解析式的确定只需要一对对应值或图像上的一个点的坐标,即可求出k的值,从而确定其解析式。六、二次函数1、二次函数的概念:一般地,如果)0,,(2acbacbxaxy是常数,,那么y叫做x的二次函数。2、二次函数的图像是一条抛物线。3、二次函数的性质:(1)a0抛物线开口向上,对称轴是x=ab2,顶点坐标是(ab2,abac442);在对称轴的左侧,3即当xab2时,y随x的增大而减小;在对称轴的右侧,即当xab2时,y随x的增大而增大;抛物线有最低点,当x=ab2时,y有最小值,abacy442最小值(2)a0抛物线开口向下,对称轴是x=ab2,顶点坐标是(ab2,abac442);在对称轴的左侧,即当xab2时,y随x的增大而增大;在对称轴的右侧,即当xab2时,y随x的增大而减小,;抛物线有最高点,当x=ab2时,y有最大值,abacy442最大值4、.二次函数的解析式有三种形式:(1)一般式:)0,,(2acbacbxaxy是常数,(2)顶点式:)0,,()(2akhakhxay是常数,(3)两根式:))((21xxxxay5、抛物线cbxaxy2中,cba,,的作用:a表示开口方向:a0时,抛物线开口向上,,,a0时,抛物线开口向下b与对称轴有关:对称轴为x=ab2,a与b左同右异c表示抛物线与y轴的交点坐标:(0,c)6、二次函数与一元二次方程的关系一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标。因此一元二次方程中的ac4b2,在二次函数中表示图像与x轴是否有交点。当0时,图像与x轴有两个交点;当=0时,图像与x轴有一个交点;当0时,图像与x轴没有交点。7、求抛物线的顶点、对称轴的方法(1)公式法:顶点是),(abacab4422,对称轴是直线abx2.(2)配方法:运用配方的方法,将抛物线的解析式化为khxay2的形式,得到顶点为(h,k),对称轴是直线hx.8、平移:khxay2可以由2yax平移得到。上加下减,左加右减。
本文标题:初中数学函数知识点汇总
链接地址:https://www.777doc.com/doc-2659210 .html