您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 其它行业文档 > 初中数学总复习方法提纲人教版
第1页1一初中数学复习方法1、数学复习的基本要求数学复习的内容可分为基础知识和基础解题技能两部分。在复习中,要注意基本概念、基本公式、基本定律和法则的辩析比较和灵活运用,做到理解、综合、创新。所谓“理解”,就是力求对中学所学的数学基础知识和基本概念从局部到整体,从微观到宏观,从具体到抽象等多角度、多层次、全方位地融会贯通,有意识地培养自己的分析理解能力、综合概括能力和抽象思维能力。对于定义、定理、公式的复习,应做到:弄清来龙去脉,沟通相互关系,掌握推证过程,注意表达形式,归纳记忆方法,明确主要用途。所谓“综合”,是指将不同学科、不同单元、不同年级、不同时间所学的数学知识进行去擅存真、去粗存精、由表及里、由浅入深的提炼加工,建立知识之间的纵横联系,使知识系统化、条理化、网络化,便于记忆,便于储存,便于提取和应用。例如,复习角的概念,可作如下归纳:(1)由共面直线所成的角—异面直线所成的角—直线和平面所成的角—平面与平面所成的角,从而弄清这一要领的形成和发展,前者如何扩充为后者,后者如何转化为前者来解决。(2)对倾斜角,辐角,极角,这些易混淆概念类比区别,从而使角的概念更清晰和准确。(3)三角中:终边相同的角、水平角、垂直角、象限角、区间角、方位角等表达形式和特性,梳理应用规律和方法。所谓“创新”,是指在融会贯通基础知识后,在解题过程中所表现出来的灵活性、独创性、简捷性、批判性和深刻性。创新能力不仅表现在综合运用所学过的知识去分析问题、解决问题,更重要的是发现新问题,拓宽和深化所学的知识领域,不断增强自己的应变能力。为此,每个同学应注意根据学过的知识去发现和挖掘书本上没有的和老师没有讲到的问题。如理解一个概念的多种内涵,对一个问题从不同的角度去思考(即一题多解),对具有共性的问题总结解题规律(即多题一解),发现解决问题的思想方法等。2.数学复习的一般方法(1)课前预习。复习课的容量大、内容多、时间紧。要提高复习效率,必须使自己的思维与老师的思维同步。而预习则是达到这一目的的重要途径。第2页2没有预习,听老师讲课,会感到老师讲的都重要,抓不住老师讲的重点;而预习了之后,再听老师讲课,就会在记忆上对老师讲的内容有所取舍,把重点放在自己还未掌握的内容上,从而提高复习效率。(2)课后复习。著名数学家华罗庚先生认为,学习数学有两个过程,一个是书由薄到厚的过程,这个过程就是由不知到多知,由知之不多到知之较多,知识逐渐积累,认识逐步深化的过程。仅有这个过程是不够的,还必须有第二个过程,就是书由厚到薄的过程。所谓书由厚到薄,就是建立知识之间的纵横联系,使知识系统化、条理化、网络化,便于储存,便于记忆,便于提取,便于应用,而课后复习就是书由厚到薄的重要途径。(3)切磋琢磨。耗散结构理论认为,一个远离平衡态的耗散结构,要从低级状态进入高级状态,要从无序走向有序,必须对外开放,必须频繁地与环境进行物质、能量和住处的交流。任何社会组织,任何个人都是远离平衡态的耗散结构因为社会组织的进化、人类的进化还远没有完成。学生更是远离平衡态的耗散结构,因为他们是正在成长中的人。因此,作为一个高中生,要想取得好的学习成绩,必须经常保持和老师、同学的交流,特别是在复习阶段。因为这个阶段的问题积累下来,将直接影响考试成绩。(4)多做练习。数学学习的目的之一就是形成一定的技能,如思维的技能、解题的技能、运算的技能等。技能是运用已有的知识和反复练习的基础上形成的自动化活动方式。技能的这一定义中有三个要点:即掌握知识是形成技能的前提,反复练习是形成技能的基础,活动自动化是形成技能的标志。因此,练习在技能的形成过程起着十分重要的作用。在复习阶段,做一些练习是十分必要的。在练习时要注意控制难题,把练习的重点放在重要和关键的知识点。1、抓概念做数学不了解概念就相当于读文章不认识字,学习数学的第一步便是背概念。2、抓记忆有人可能会说,那么多概念、方法、要注意的地方怎么背呀?一个不错的方法就是借助顺口溜背诵。3、抓系统每学完一章就及时画出知识结构图,要注意的是,一定要凭记忆画,有错再纠正,千万不要抄书后或辅导书上的知识结构图。4、抓错题无论是平时做练习,还是考试,都会出现错题,这时要注意集错,最好再写出错因分析。这样,及时复习时找不到卷子,看看集错本仍可即进行复习工作。5、抓做题做题固然重要,但绝不能使用题海战术。做题也要注重方法,一本题集如果全做,时间肯定不允许,那怎么办?先看题,会做的题就过,不会做的题再做,实在不会就看看解答过程,但一定要在题上做标记,等下次再看这本题集时重点看做过标记的题。6、抓整理把老师提到的重点、难点、易错点记载笔记本上,定期整理,以便复习时使用第3页3新人教版初中数学复习提纲第一章有理数1.1正数与负数①在以前学过的0以外的数前面加上负号“—”的数叫负数(negativenumber)。与负数具有相反意义,即以前学过的0以外的数叫做正数(positivenumber)(根据需要,有时在正数前面也加上“+”)。②大于0的数叫正数。③0既不是正数也不是负数。0是正数和负数的分界,是唯一的中性数。④搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等1.2有理数正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。整数和分数统称有理数(rationalnumber).以用m/n(其中m,n是整数,n≠0)表示有理数。通常用一条直线上的点表示数,这条直线叫数轴(numberaxis)。数轴三要素:原点、正方向、单位长度。在直线上任取一个点表示数0,这个点叫做原点(origin)。数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。只有符号不同的两个数叫做互为相反数(oppositenumber)。(例:2的相反数是-2;0的相反数是0)数轴上表示数a的点与原点的距离叫做数a的绝对值(absolutevalue),记作|a|。从几何意义上讲,数的绝对值是两点间的距离。一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。1.3有理数的加减法①有理数加法法则:1.同号两数相加,取相同的符号,并把绝对值相加。2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。3.一个数同0相加,仍得这个数。加法的交换律和结合律②有理数减法法则:减去一个数,等于加这个数的相反数。1.4有理数的乘除法①有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。乘积是1的两个数互为倒数。乘法交换律/结合律/分配律②有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。1.5有理数的乘方求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(basenumber),n叫做指数(exponent)。负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。第4页4有理数的混合运算法则:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法,注意a的范围为1≤a10。从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significantdigit)。四舍五入遵从精确到哪一位就从这一位的下一位开始,而不是从数字的末尾往前四舍五入。比如:3.5449精确到0.01就是3.54而不是3.55.分类有理数大小的比较加减正数与负数→有理数数轴、相反数乘除绝对值、倒数有理数运算有理数的运算律→运算结果→符号/绝对值乘方/开方→科学计数法→近似数/有效数/精确度混合运算第二章整式2.1整式单项式:由数字和字母乘积组成的式子。系数,单项式的次数.单项式指的是数或字母的积的代数式.单独一个数或一个字母也是单项式.因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,即分母中不含有字母,若式子中含有加、减运算关系,其也不是单项式.单项式的系数:是指单项式中的数字因数;单项数的次数:是指单项式中所有字母的指数的和.多项式:几个单项式的和。判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式.每个单项式称项,常数项,多项式的次数就是多项式中次数最高的次数。多项式的次数是指多项式里次数最高项的次数,这里33ab是次数最高项,其次数是6;多项式的项是指在多项式中,每一个单项式.特别注意多项式的项包括它前面的性质符号.它们都是用字母表示数或列式表示数量关系。注意单项式和多项式的每一项都包括它前面的符号。单项式和多项式统称为整式。2.2整式的加减同类项:所含字母相同,并且相同字母的指数也相同的项。与字母前面的系数(≠0)无关。同类项必须同时满足两个条件:(1)所含字母相同;(2)相同字母的次数相同,二者缺一不可.同类项与系数大小、字母的排列顺序无关合并同类项:把多项式中的同类项合并成一项。可以运用交换律,结合律和分配律。合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变;字母的升降幂排列:按某个字母的指数从小(大)到大(小)的顺序排列。如果括号外的因数是正(负)数,去括号后原括号内各项的符号与原来的符号相同(反)。整式加减的一般步骤:1、如果遇到括号按去括号法则先去括号.2、结合同类项.3、合并同类项2.3整式的乘法法则:第5页5单项式与单项式相乘,把它们的系数、同底数幂分别相乘,其余字母连同它的指数不变,作为积的因式;单项式和多项式相乘,就是用单项式去乘多项式的每项,再把所得的积相加。多项式和多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。2.4整式的除法法则单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。单项式:单项式的次数、系数分类多项式:多项式的项数、系数、次数→升降幂排列列式子→整式去添括号整式的加减合并同类项第三章一元一次方程3.1一元一次方程方程是含有未知数的等式。方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程(linearequationwithoneunknown)。注意判断一个方程是否是一元一次方程要抓住三点:1)未知数所在的式子是整式(方程是整式方程);2)化简后方程中只含有一个未知数;3)经整理后方程中未知数的次数是1.解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解(solution)。等式的性质:1)等式两边同时加上或减去同一个数或同一个式子(整式或分式),等式不变(结果仍相等).2)等式两边同时乘以或除以同一个不为零的数,等式不变.注意:运用性质时,一定要注意等号两边都要同时变;运用性质2时,一定要注意0这个数.3.2解一元一次方程(一)----合并同类项与移项一般步骤:移项→合并同类项→系数化1;(可以省略部分)了解无限循环小数化分数的方法,从而证明它是分数,也就是有理数。3.3解一元一次方程(二)----去括号与去分母一般步骤:去分母(方程两边同乘各分母的最小公倍数)→去括号→移项→合并同类项→系数化1;以上是解一元一次方程五个基本步骤,在实际解方程的过程中,五个步骤不一定完全用上,或有些步骤还需要重复使用.因此,解方程时,要根据方程的特点,灵活选择方法.在解方程时还要注意以下几点:①去分母,在方程两边都乘以各分母的最小公倍数,不要漏乘不含分母的项;分子是一个整体,去分母后应加上括号;去分母与分母化整是两个概念,不能混淆;②去括号遵从先去小括号,再去中括号,最后去大
本文标题:初中数学总复习方法提纲人教版
链接地址:https://www.777doc.com/doc-2659455 .html