您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 初中数学经典函数图像性质总结
初中数学函数性质、图像性质知识点总结-------成长家教人生轨迹都是圆,但是你可以将圆的半径延长些初中数学一次函数性质、图像性质知识点总结:一次函数:一次函数图像与性质是中考必考的内容之一。中考试题中分值约为10分左右题型多样,形式灵活,综合应用性强。甚至有存在探究题目出现。主要考察内容:①会画一次函数的图像,并掌握其性质。②会根据已知条件,利用待定系数法确定一次函数的解析式。③能用一次函数解决实际问题。④考察一次函数与二元一次方程组,一元一次不等式的关系。突破方法:①正确理解掌握一次函数的概念,图像和性质。②运用数学结合的思想解与一次函数图像有关的问题。③掌握用待定系数法球一次函数解析式。④做一些综合题的训练,提高分析问题的能力。一、函数性质:1.y=kx+b(k,b为常数,k≠0)称y是x的一次函数。当x=0时,b为函数在y轴上的点,坐标为(0,b)。当b=0(即y=kx),一次函数图像变为正比例函数,正比例函数是特殊的一次函数。2.在两个一次函数表达式中:当两一次函数表达式中的k相同,b也相同时,两一次函数图像重合;当两一次函数表达式中的k相同,b不相同时,两一次函数图像平行;当两一次函数表达式中的k、b不相同时,两一次函数图像相交。当两一次函数表达式中的k不相同,b相同时,两一次函数图像交于y轴上的同一点(0,b)。二、图像性质1.作法与图形:通过如下3个步骤:(1)列表.初中数学函数性质、图像性质知识点总结-------成长家教人生轨迹都是圆,但是你可以将圆的半径延长些(2)描点;[一般取两个点,根据“两点确定一条直线”的道理,也可叫“两点法”。一般的y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点画直线即可。正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取(0,0)和(1,k)两点。(3)连线,可以作出一次函数的图象——一条直线。因此,作一次函数的图象只需知道2点,并连成直线即可。(通常找函数图象与x轴和y轴的交点).2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像都是过原点。3.函数不是数,它是指某一变化过程中两个变量之间的关系。4.k,b与函数图像所在象限:○1y=kx时(即b等于0,y与x成正比例):当k0时,直线必通过第一、三象限,y随x的增大而增大;当k0时,直线必通过第二、四象限,y随x的增大而减小。○2y=kx+b时:当k0,b0,这时此函数的图象经过第一、二、三象限;当k0,b0,这时此函数的图象经过第一、三、四象限;当k0,b0,这时此函数的图象经过第一、二、四象限;当k0,b0,这时此函数的图象经过第二、三、四象限;三、特殊位置关系:当平面直角坐标系中两直线平行时,其函数解析式中K值相等初中数学函数性质、图像性质知识点总结-------成长家教人生轨迹都是圆,但是你可以将圆的半径延长些当平面直角坐标系中两直线垂直时,其函数解析式中K值互为负倒数(即两个K值的乘积为-1)③点斜式y-y1=k(x-x1)(k为直线斜率,(x1,y1)为该直线所过的一个点)④两点式(y-y1)/(y2-y1)=(x-x1)/(x2-x1)(直线上(x1,y1)与(x2,y3)两点)⑤截距式(a、b分别为直线在x、y轴上的截距)⑥实用型(由实际问题来做)公式1.求函数图像的k值:(y1-y2)/(x1-x2)2.求与x轴平行线段的中点:|x1-x2|/23.求与y轴平行线段的中点:|y1-y2|/24.求任意线段的长:√(x1-x2)^2+(y1-y2)^2(根号下(x1-x2)与(y1-y2)的平方和)5.求两个一次函数式图像交点坐标:解两函数式解:设两个一次函数y1=k1x+b1y2=k2x+b2令y1=y2得k1x+b1=k2x+b2将解得的x=x0值代回y1=k1x+b1y2=k2x+b2两式任一式得到y=y0则(x0,y0)即为y1=k1x+b1与y2=k2x+b2交点坐标6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]7.若两条直线y1=k1x+b1∥y2=k2x+b2,那么k1=k2,b1≠b28.如两条直线y1=k1x+b1⊥y2=k2x+b2,那么k1×k2=-19.y=k(x-n)+b就是向右平移n个单位二次函数知识点一、二次函数概念:1.二次函数的概念:一般地,形如2yaxbxc(abc,,是常数,0a)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数0a,而bc,可以为零.二次函数的定义域是全体实数.2.二次函数2yaxbxc的结构特征:初中数学函数性质、图像性质知识点总结-------成长家教人生轨迹都是圆,但是你可以将圆的半径延长些⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.⑵abc,,是常数,a是二次项系数,b是一次项系数,c是常数项.二、二次函数的基本形式1.二次函数基本形式:2yax的性质:a的绝对值越大,抛物线的开口越小。2.2yaxc的性质:上加下减。3.2yaxh的性质:左加右减。4.2yaxhk的性质:上加下减a的符号开口方向顶点坐标对称轴性质0a向上00,y轴0x时,y随x的增大而增大;0x时,y随x的增大而减小;0x时,y有最小值0.0a向下00,y轴0x时,y随x的增大而减小;0x时,y随x的增大而增大;0x时,y有最大值0.a的符号开口方向顶点坐标对称轴性质0a向上0c,y轴0x时,y随x的增大而增大;0x时,y随x的增大而减小;0x时,y有最小值c.0a向下0c,y轴0x时,y随x的增大而减小;0x时,y随x的增大而增大;0x时,y有最大值c.a的符号开口方向顶点坐标对称轴性质0a向上0h,X=hxh时,y随x的增大而增大;xh时,y随x的增大而减小;xh时,y有最小值0.0a向下0h,X=hxh时,y随x的增大而减小;xh时,y随x的增大而增大;xh时,y有最大值0.a的符号开口方向顶点坐标对称轴性质0a向上(h,k)X=hxh时,y随x的增大而增大;xh时,y随x的增大而减小;xh时,y有最小值k.0a向下(h,k)X=hxh时,y随x的增大而减小;xh时,y随x的增大而增大;xh时,y有最大值k.
本文标题:初中数学经典函数图像性质总结
链接地址:https://www.777doc.com/doc-2659966 .html