您好,欢迎访问三七文档
压裂改造及其分类人们将储层分为常规和非常规。压裂的目的不同,常规储层和页岩气储层的水力压裂实现时采用的策略是不同的。页岩气的勘探开发需求引起了水力压裂技术与理论的发展,从而拓展了水力压裂技术的分类。因此,按储层的渗透性和增产机理,水力压裂技术可以分为3种类型:(1)以解除污染并提高近井地带渗流能力的解堵型压裂。主要应用于渗透率比较高的储层,其水力压裂的实施策略是追求较高的人工裂缝导流能力。施工中采用较大排量、高砂比、有时配合端部脱砂等工艺,以消除钻完井过程中的污染,增加近井地带的渗透能力。这类水力压裂可以提高单井产量,但是因为人工裂缝尺度不大,对井网部署、注水开发、采收率等开发指标几乎没有影响。(2)以增大油气泄油面积的改造型压裂。主要应用于低渗透和特低渗透储层,其水力压裂的实施策略是追求较长的人工裂缝长度。这类压裂施工采用高黏度压裂液,大液量、大砂量注入,在储层形成几十米或上百米并具有一定导流能力的长裂缝,扩大了单井泄油面积。由于人工裂缝尺度较大并具有一定的方向性,这类压裂可以提高单井产量和开采速度,有益于采收率等开发指标的改善。(3)以形成最大SRV的缝网型压裂。当水力压裂技术应用于页岩气储层时,其储层改造机理与前面两种类型完全不同。页岩气压裂是通过尽可能“压碎”储层,在页岩储层中人工形成复杂密集裂缝网络,使游离和吸附在页岩空隙中的页岩气可以流动并汇集到井筒。这类压裂提高单井产量并决定了单井的可采资源量和采收率。描述页岩气压裂的关键参数是压裂形成的有效裂缝体积ESRV(effectivestimulatedreservoirvolume)、裂缝密度、支撑和未支撑裂缝导流能力,而不仅仅是人工裂缝的长度和导流能力。其水力压裂的实施策略是追求较高的有效裂缝体积。Cipolla定义裂缝复杂指数FCI(fracturecomplexindex)来描述网络裂缝有效性,即网缝宽度与长度之比。这类水力压裂形成的裂缝网络使储层流体的流态复杂,压裂决定了井的初始产量和单井可采资源量(EUR)、开采的合理井距、以及采收率等开发技术指标。Barnett某页岩气井压后微地震监测表明,网络裂缝的SRV达到14.5亿ft3(约4106万立方米),是单一裂缝改造体积的3.37倍。国内外页岩气压裂的SRV达到上千万立方米。根据储层渗透率的大小情况,可将水力压裂分为3类:①解堵型压裂,通俗称为“压痛”;②改造型压裂,通俗称为“压开”;③裂缝型压裂(或“体积改造技术”),通俗称为“压碎”。
本文标题:压裂改造及其分类
链接地址:https://www.777doc.com/doc-2670113 .html