您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 能源与动力工程 > 威海力学培训班---北化工刘军
橡胶材料粘弹性及机械性能分子模拟研究刘军教授张立群教授北京化工大学一、高分子链运动状态形形色色的“态”晶态,无定形态----凝聚态玻璃态,橡胶态,粘流态----力学状态固态和液态---Both玻璃态橡胶态粘流态区别何在?(1)力学状态不同,变形难易不同,即模量不同(2)源于运动单元不同,故又称为运动状态(3)运动单元大,变形易;运动单元小,变形难运动单元的三个层次整链链段小单元CH2CHCH2CHDifferentlengthandtimescalesofpolymers(BinderK,Prog.Polym.Sci.2003,28,115)粗粒度模拟(coarse-grainedmodel)全原子模拟(fullyatomisticmodel)结构单元的运动随温度升高依次启动小单元链段整链温度升高结构单元运动的启动称作转变最方便的观察手段是作模量-温度曲线Transition2Transition1粘流态(末端区)模量-温度曲线109876543IIIIIIIVlogG,PaTemperature玻璃态橡胶平台转变区剪切拉伸压缩两次模量陡降代表两种结构单元运动的启动玻璃态橡胶态链段运动启动玻璃化转变橡胶态粘流态整链运动启动粘流转变TgTf109876543IIIVlogG,PaTemperature109876543IIIIIIVlogG,PaTemperature橡胶平台I109876543LogG,PaTemperatureMcM2M3M4M5McM2M3M4M5橡胶平台的长短主要由什么决定?分子链缠结分子链缠结109876543LogG,PaTemperatureMcM2M3M4M5McM2M3M4M5IIIIIIIV(1)分子量变,玻璃化转变温度不变,表明在II区启动的结构单元为链段(2)分子量越大,IV区转折温度越高,运动单元必为整链(3)分子量越大,橡胶平台越长;如果聚合物为交联的,橡胶平台无限长LowmolecularweightCross-linkedChainentanglement聚合物MeMc聚乙烯1,2503,8001,4聚丁二烯1,9005,900顺式聚异戊二烯5,80010,000聚异丁烯8,90015,200聚二甲基硅氧烷8,10024,400聚醋酸乙烯酯6,90024,500聚甲基丙烯酸甲酯5,90027,500聚甲基苯乙烯13,50028,000聚苯乙烯18,10031,200常见聚合物的临界分子量Mc与缠结分子量Me结晶聚合物的模量-温度曲线Temperature(C)高分子量logG,Pa50100150200250106842玻璃化转变熔点橡胶平台低结晶度低分子量高结晶度无定形聚合物TgTfTemperatureCStrain%GlassyGlasstransitionViscousliquidRubberyplateauMaMb橡胶平台温度形变曲线MbMa小于Strain%RigidcrystallineViscousliquidTmTemperatureCMaMb高结晶度聚合物RubberplateauMbMa小于Strain%RigidcrystallineViscousliquidTgTmTemperatureCMaMbRubberplateauToughcrystalline低结晶度聚合物increasingtemperatureMa小于Mb小结(1)聚合物分子链表现出多层次多尺度,其运动状态会表现出不同运动单元(小单元、链段与整链)的启动。(2)橡胶分子链不同运动单元的启动依赖于温度的变化,并呈现出不同的力学性能,因此为了描述聚合物运动状态,一个最直接的方法就是测试聚合物的模量-温度曲线。(3)另一个表征橡胶分子链运动状态的方法就是测试聚合物的形变-温度曲线。橡胶分子链粘弹性物理参数243橡胶应力应变状态方程计算机模拟简介156结论高分子链运动状态应用实例橡胶弹性的特征:小应力下可逆大形变橡胶弹性的本质:熵弹性22/102nlCr2sinmaxnlr2/12/102max~)2/sin(nnClnlrR橡胶弹性的条件一:分子链长橡胶弹性的条件二:柔性高室温下分子动能(RT=8.31300J/mol=2.5kJ/mol)HHHHHHHHHH~0.5kcal~2kcal橡胶弹性的条件三:轻度交联拉伸回缩无交联的情况建立交联点有交联的情况构成橡胶弹性体的三个要件:(1)必须由长链聚合物构成(2)聚合物链必须具有高度柔性(3)聚合物链必须为交联网络橡胶热力学状态方程ffdLffdL恒温条件下将原长度为L0的橡胶带拉长dLL体系的内能受三个因素影响:(1)拉伸功(2)体积变化功(3)热量变化fdLpdVTdSdUffdLfdLTdSdU体积不变:fdLTdSdUHelmholtz(恒容)自由能全微分:F=U–TSdF=dUd(TS)=dU–TdS–SdT力与熵分别为Helmholtz自由能的偏导数:LV,TFSVTLf,F=–SdT+fdLVTVTVTVTLSTLULTSULFf,,,,)(LV,TFSVTLf,FLVVVVTTfTLLLS,22,FTFLVVTVTTfTLULFf,,,不可测量LVVTTfTLUf,,(f/T)V,L(U/L)T,VTemperature固定伸长以外力对温度作图熵贡献能贡献=L/L0fefsfFlory构图VTVTLSTLUf,,fe/f10.750.50.2500.7511.251.51.752室温下天然橡胶的能弹性分数表明弹性力中熵变部分总是占80-85%VTLSTf,揭示了橡胶弹性的本质:熵弹性VTVTLSTLUf,,如果采用Gibbs自由能进行分析,能够得到平行结果:TpTpLSTLGf,.橡胶的形变习惯上用拉伸比表示:10LL00LLLffL0L(1)只考虑熵的贡献,不考虑构象能,即G=-TS(2)只考虑弹性,不考虑粘性(即不考虑塑性流动)(3)拉伸过程体积不变基本假定(1)网链的末端距具有高斯分布(等同于各向同性)链的一端处于直角坐标系的原点,另一端出现在体元dxdydz中的几率为:22222/322)(3exp23),,(nlzyxnlzyxW准基本假定其中nl2为高斯链即自由连接链的均方末端距Orxyzdxdydz准基本假定(2)相似形变假定030201,,ccbbaa拉伸前材料尺寸为a0,b0,c0拉伸后材料尺寸为a,b,c变形前后的拉伸比为a0b0c0abc宏观变化(2)相似形变假定030201',','zzyyxx拉伸前末端距矢量为0000(,,)rxyz拉伸后末端距矢量为(,,)rxyz变形前后的坐标关系为xyz),,(0000zyxr),,(zyxr微观变化任一根网链Boltzmann熵公式S=klnWW为几率密度22222/322)(3exp23),,(nlzyxnlzyxW)(23ln2222zyxnlkCWkS)(2320202020zyxnlkCS)(232023202220212zyxnlkCS20232022202120)1()1()1(23zyxnlkSSSi变形前一根网链的熵为:变形后一根网链的熵为:变形前后的熵变为:设样品在三个维度上的拉伸比为1,2,3:iiiiiiizyxnlkSS2023202220212)1()1()1(23网络中全部网链的熵变(S)为各网链熵变(Si)之和:20232022202120)1()1()1(23zyxnlkSSSiiiiiiiizyxnlkSS2023202220212)1()1()1(23由勾股定理:iiiiiiiizyxr20202022020202020331rNrzyxiiiiiiii由各向同性假设:20z20y20x20riiiiiiizyxnlkSS2023202220212)1()1()1(23202020203rNzyxiiiiii)3(2)3(2)1()1()1(323232221232221220232221202NknlrNkrNnlkS)3(2232221NkS)3(2232221NkTSTG自由能G=H-TS-TS:橡胶弹性分子理论的基本方程适用于各类形变)3(2232221NkTSTG单向拉伸,设为x轴:拉伸过程体积不变:123=12=3=1/1/21=代入32212NkTG123TpLGf,TpTpTpGVLLGLALGAAf,,000,001/112,1VNkTGVTp橡胶网络所受工程应力为:32212NkTGcAAcMNNMVN/21VNkT故状态方程可写作:21cMRTN/V是单位体积的网链数,等于单位体积重除平均网链分子量21VNkT21cMRT321VNkTdddd=1+,d=d模量VNkTdd31VNkTdd很大VNkT3相当于拉伸模量EVNkT相当于剪切模量G模量随拉伸减小2.01.61.20.80.40.0拉伸比应力(MPa)01.02.03.04.05.0计算点实验曲线实验现象:橡胶样品的模量在拉伸过程中逐步下降,在拉伸大约100%时模量会降到初始值的三分之一2cMRTVNkT定义表观模量网链密度越大,模量越高网链分子量越小,模量越高温度越高,模量越高WWheat常用于代表模量,就是人们常称的拉伸或剪切模量NRAB54321012345678StressMPaStrain实验曲线状态方程小拉伸比时负偏差大拉伸比时正偏差小拉伸比时负偏差的原因橡胶网络往往不是理想网络,有无效的悬挂环与悬挂链存在悬挂链亦称松链橡胶分子链粘弹性物理参数243橡胶应力应变状态方程计算机模拟简介156结论高分子链运动状态应用实例粘弹性I:伴随粘性的弹性形变粘弹性II:伴随弹性的粘性形变(1)能量部分储为应变能,部分损耗于克服内摩擦(2)形变部分可逆,部分形状记忆(3)形变与回复均依赖时间两类粘弹性的共性:现象学模型G弹簧粘壶=GGMaxwell模型Kelvin模型G串联并联tgGG'G”与tg为损耗能量的两个度量损耗大,滚动阻力大,抓地性强,油耗大损耗小,油耗低,抓地性差,湿滑性严重在轮胎用胶中的实际意义滞后:动态载荷下应变滞后于应力的现象
本文标题:威海力学培训班---北化工刘军
链接地址:https://www.777doc.com/doc-267079 .html