您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 小学教育 > 全国初中数学竞赛辅导(八年级)教学案全集第12讲平行线问题
全国初中数学竞赛辅导(八年级)教学案全集第十二讲平行线问题平行线是我们日常生活中非常常见的图形.练习本每一页中的横线、直尺的上下两边、人行横道上的“斑马线”以及黑板框的对边、桌面的对边、教室墙壁的对边等等均是互相平行的线段.正因为平行线在生活中的广泛应用,因此有关它的基本知识及性质成为中学几何的基本知识.正因为平行线在几何理论中的基础性,平行线成为古往今来很多数学家非常重视的研究对象.历史上关于平行公理的三种假设,产生了三种不同的几何(罗巴切夫斯基几何、黎曼几何及欧几里得几何),它们在使人们认识宇宙空间中起着非常重要的作用.现行中学中所学的几何是属于欧几里得几何,它是建立在这样一个公理基础之上的:“在平面中,经过直线外一点,有且只有一条直线与这条直线平行”.在此基础上,我们学习了两条平行线的判定定理及性质定理.下面我们举例说明这些知识的应用.例1如图1-18,直线a∥b,直线AB交a与b于A,B,CA平分∠1,CB平分∠2,求证:∠C=90°.分析由于a∥b,∠1,∠2是两个同侧内角,因此∠1+∠2=过C点作直线l,使l∥a(或b)即可通过平行线的性质实现等角转移.证过C点作直线l,使l∥a(图1-19).因为a∥b,所以b∥l,所以∠1+∠2=180°(同侧内角互补).因为AC平分∠1,BC平分∠2,所以又∠3=∠CAE,∠4=∠CBF(内错角相等),所以∠3+∠4=∠CAE+∠CBF说明做完此题不妨想一想这个问题的“反问题”是否成立,即“两条直线a,b被直线AB所截(如图1-20所示),CA,CB分别是∠BAE与∠ABF的平分线,若∠C=90°,问直线a与直线b是否一定平行?”由于这个问题与上述问题非常相似(将条件与结论交换位置),因此,不妨模仿原问题的解决方法来试解.例2如图1-21所示,AA1∥BA2求∠A1-∠B1+∠A2.分析本题对∠A1,∠A2,∠B1的大小并没有给出特定的数值,因此,答案显然与所给的三个角的大小无关.也就是说,不管∠A1,∠A2,∠B1的大小如何,答案应是确定的.我们从图形直观,有理由猜想答案大概是零,即∠A1+∠A2=∠B1.①猜想,常常受到直观的启发,但猜想必须经过严格的证明.①式给我们一种启发,能不能将∠B1一分为二使其每一部分分别等于∠A1与∠A2.这就引发我们过B1点引AA1(从而也是BA2)的平行线,它将∠B1一分为二.证过B1引B1E∥AA1,它将∠A1B1A2分成两个角:∠1,∠2(如图1-22所示).因为AA1∥BA2,所以B1E∥BA2.从而∠1=∠A1,∠2=∠A2(内错角相等),所以∠B1=∠1+∠2=∠A1+∠A2,即∠A1-∠B1+∠A2=0.说明(1)从证题的过程可以发现,问题的实质在于AA1∥BA2,它与连接A1,A2两点之间的折线段的数目无关,如图1-23所示.连接A1,A2之间的折线段增加到4条:A1B1,B1A2,A2B2,B2A3,仍然有∠A1+∠A2+∠A3=∠B1+∠B2.(即那些向右凸出的角的和=向左凸的角的和)即∠A1-∠B1+∠A2-∠B2+∠A3=0.进一步可以推广为∠A1-∠B1+∠A2-∠B2+…-∠Bn-1+∠An=0.这时,连结A1,An之间的折线段共有n段A1B1,B1A2,…,Bn-1An(当然,仍要保持AA1∥BAn).推广是一种发展自己思考能力的方法,有些简单的问题,如果抓住了问题的本质,那么,在本质不变的情况下,可以将问题推广到复杂的情况.(2)这个问题也可以将条件与结论对换一下,变成一个新问题.问题1如图1-24所示.∠A1+∠A2=∠B1,问AA1与BA2是否平行?问题2如图1-25所示.若∠A1+∠A2+…+∠An=∠B1+∠B2+…+∠Bn-1,问AA1与BAn是否平行?这两个问题请同学加以思考.例3如图1-26所示.AE∥BD,∠1=3∠2,∠2=25°,求∠C.分析利用平行线的性质,可以将角“转移”到新的位置,如∠1=∠DFC或∠AFB.若能将∠1,∠2,∠C“集中”到一个顶点处,这是最理想不过的了,过F点作BC的平行线恰能实现这个目标.解过F到FG∥CB,交AB于G,则∠C=∠AFG(同位角相等),∠2=∠BFG(内错角相等).因为AE∥BD,所以∠1=∠BFA(内错角相等),所以∠C=∠AFG=∠BFA-∠BFG=∠1-∠2=3∠2-∠2=2∠2=50°.说明(1)运用平行线的性质,将角集中到适当位置,是添加辅助线(平行线)的常用技巧.(2)在学过“三角形内角和”知识后,可有以下较为简便的解法:∠1=∠DFC=∠C+∠2,即∠C=∠1-∠2=2∠2=50°.例4求证:三角形内角之和等于180°.分析平角为180°.若能运用平行线的性质,将三角形三个内角集中到同一顶点,并得到一个平角,问题即可解决,下面方法是最简单的一种.证如图1-27所示,在△ABC中,过A引l∥BC,则∠B=∠1,∠C=∠2(内错角相等).显然∠1+∠BAC+∠2=平角,所以∠A+∠B+∠C=180°.说明事实上,我们可以运用平行线的性质,通过添加与三角形三条边平行的直线,将三角形的三个内角“转移”到任意一点得到平角的结论.如将平角的顶点设在某一边内,或干脆不在三角形的边上的其他任何一点处,不过,解法将较为麻烦.同学们不妨试一试这种较为麻烦的证法.例5求证:四边形内角和等于360°.分析应用例3类似的方法,添加适当的平行线,将这四个角“聚合”在一起使它们之和恰为一个周角.在添加平行线中,尽可能利用原来的内角及边,应能减少推理过程.证如图1-28所示,四边形ABCD中,过顶点B引BE∥AD,BF∥CD,并延长AB,CB到H,G.则有∠A=∠2(同位角相等),∠D=∠1(内错角相等),∠1=∠3(同位角相等).∠C=∠4(同位角相等),又∠ABC(即∠B)=∠GBH(对顶角相等).由于∠2+∠3+∠4+∠GBH=360°,所以∠A+∠B+∠C+∠D=360°.说明(1)同例3,周角的顶点可以取在平面内的任意位置,证明的本质不变.(2)总结例3、例4,并将结论的叙述形式变化,可将结论加以推广:三角形内角和=180°=(3-2)×180°,四边形内角和=360°=2×180°=(4-2)×180°.人们不禁会猜想:五边形内角和=(5-2)×180°=540°,…………………………n边形内角和=(n-2)×180°.这个猜想是正确的,它们的证明在学过三角形内角和之后,证明将非常简单.(3)在解题过程中,将一些表面并不相同的问题,从形式上加以适当变形,找到它们本质上的共同之处,将问题加以推广或一般化,这是发展人的思维能力的一种重要方法.例6如图1-29所示.直线l的同侧有三点A,B,C,且AB∥l,BC∥l.求证:A,B,C三点在同一条直线上.分析A,B,C三点在同一条直线上可以理解为∠ABC为平角,即只要证明射线BA与BC所夹的角为180°即可,考虑到以直线l上任意一点为顶点,该点分直线所成的两条射线为边所成的角均为平角,结合所给平行条件,过B作与l相交的直线,就可将l上的平角转换到顶点B处.证过B作直线BD,交l于D.因为AB∥l,CB∥l,所以∠1=∠ABD,∠2=∠CBD(内错角相等).又∠1+∠2=180°,所以∠ABD+∠CBD=180°,即∠ABC=180°=平角.A,B,C三点共线.思考若将问题加以推广:在l的同侧有n个点A1,A2,…,An-1,An,且有AiAi+1∥l(i=1,2,…,n-1).是否还有同样的结论?例7如图1-30所示.∠1=∠2,∠D=90°,EF⊥CD.求证:∠3=∠B.分析如果∠3=∠B,则应需EF∥BC.又知∠1=∠2,则有BC∥AD.从而,应有EF∥AD.这一点从条件EF⊥CD及∠D=90°不难获得.证因为∠1=∠2,所以AD∥BC(内错角相等,两直线平行).因为∠D=90°及EF⊥CD,所以AD∥EF(同位角相等,两直线平行).所以BC∥EF(平行公理),所以∠3=∠B(两直线平行,同位角相等).练习十二1.如图1-31所示.已知AB∥CD,∠B=100°,EF平分∠BEC,EG⊥EF.求∠BEG和∠DEG.2.如图1-32所示.CD是∠ACB的平分线,∠ACB=40°,∠B=70°,DE∥BC.求∠EDC和∠BDC的度数.3.如图1-33所示.AB∥CD,∠BAE=30°,∠DCE=60°,EF,EG三等分∠AEC.问:EF与EG中有没有与AB平行的直线,为什么?4.证明:五边形内角和等于540°.5.如图1-34所示.已知CD平分∠ACB,且DE∥ACCD∥EF.求证:EF平分∠DEB.
本文标题:全国初中数学竞赛辅导(八年级)教学案全集第12讲平行线问题
链接地址:https://www.777doc.com/doc-2687452 .html