您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 相似图形单元测试题(含答案)
第四章相似图形单元测试题时间120分钟,满分120分一.选择题(每小题3分,共30分)1、如图,在RtABC△内有边长分别为a,b,c的三个正方形.则a,b,c满足的关系式是()A.bacB.bacC.222bacD.22bac2、如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC相似的是()3、如下左图,五边形ABCDE和五边形A1B1C1D1E1是位似图形,且PA1=32PA,则AB׃A1B1等于()A.32B.23C.53D.354、如上中图,在大小为4×4的正方形网格中,是相似三角形的是().A.①和②B.②和③C.①和③D.②和④5、厨房角柜的台面是三角形,如上右图,如果把各边中点的连线所围成的三角形铺成黑色大理石.(图中阴影部分)其余部分铺成白色大理石,那么黑色大理石的面积与白色大理石面积的比是()A.14B.41C.13D.346、在△MBN中,BM=6,点A,C,D分别在MB、NB、MN上,四边形ABCD为平行四边形,∠NDC=∠MDA则□ABCD的周长是()A.24B.18C.16D.127、下列说法“①位似图形都相似;②位似图形都是平移后再放大(或缩小)得到;③直角三角形斜边上的中线与斜边的比为1∶2;④两个相似多边形的面积比为4∶9,则周长的比为16∶81.”中,正确的有()A.1个B.2个C.3个D.4个8、如图,点M在BC上,点N在AM上,CM=CN,CMBMANAM,下列结论正确的是()A.ABM∽ACBB.ANC∽AMBC.ANC∽ACMD.CMN∽BCA9、已知:如图,小明在打网球时,要使球恰好能打过而且落在离网5米的位置上(网球运行轨迹为直线),则球拍击球的高度h应为().A.0.9mB.1.8mC.2.7mD.6m10、如图,路灯距地面8米,身高1.6米的小明从距离灯的底部(点O)20米的点A处,沿OA所在的直线行走14米到点B时,人影的长度A.增大1.5米B.减小1.5米C.增大3.5米D.减小3.5米BAC第8题图ABCNME1D1C1B1A1BDACEP二、填空题:(30分)11、如图,在平行四边形ABCD中,M、N为AB的三等分点,DM、DN分别交AC于P、Q两点,则AP:PQ:QC=.12、如图,将①∠BAD=∠C;②∠ADB=∠CAB;③BCBDAB2;④DBABADCA;⑤DAACBABC;⑥ACDABABC中的一个作为条件,另一个作为结论,组成一个真命题,则条件是__________,结论是_______.(注:填序号)13、如图,RtABC中,AC⊥BC,CD⊥AB于D,AC=8,BC=6,则AD=_________。14、已知:AM∶MD=4∶1,BD∶DC=2∶3,则AE∶EC=_________。15、如图,C为线段AB上的一点,△ACM、△CBN都是等边三角形,若AC=3,BC=2,则△MCD与△BND的面积比为。16、如图,在矩形ABCD中,沿EF将矩形折叠,使A、C重合,若AB=6,BC=8,则折痕EF的长为.17、如图,已知点D是AB边的中点,AF∥BC,CG∶GA=3∶1,BC=8,则AF=18、如图,在平面直角坐标系中有两点A(4,0),B(0,2),如果点C在x轴上(C与A不重合)当点C的坐标为时,使得△BOC∽△AOB.19、两个相似多边形的一组对应边分别为3cm和4.5cm,如果它们的面积之和为130cm2,那么较小的多边形的面积是cm2.20、已知△ABC∽△A′B′C′,且AB∶A′B′=2∶3,,75CBAABCSS则CBAS.三、解答题:(60分)21.(6分)如图6电线杆上有一盏路灯O,电线杆与三个等高的标杆整齐划一地排列在马路一侧的一直线上,AB、CD、EF是三个标杆,相邻的两个标杆之间的距离都是2m,已知AB、CD在灯光下的影长分别为BM=1.6m,DN=0.6m.(1)请画出路灯O的位置和标杆EF在路灯灯光下的影子。(2)求标杆EF的影长。22、(6分)阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.ABCDMN第15题ABDFGCE第17题23、(6分)(1)如图一,等边△ABC中,D是AB上的动点,以CD为一边,向上作等边△EDC,连结AE。求证:AE//BC;(2)如图二,将(1)中等边△ABC的形状改成以BC为底边的等腰三角形。所作△EDC改成相似于△ABC。请问:是否仍有AE//BC?证明你的结论。24、(7分)如图,在ABC△和DEF△中,90AD∠∠,3ABDE,24ACDF.(1)判断这两个三角形是否相似?并说明为什么?(2)能否分别过AD,在这两个三角形中各作一条辅助线,使ABC△分割成的两个三角形与DEF△分割成的两个三角形分别对应相似?证明你的结论.25、(6分)如图,点都在网格线交点处的三角形叫做格点三角形,已知图中的每个小正方形的边长都是1个单位,在图中选择适当的位似中心,画一个与格点△DEF位似且位似比不等于1的格点三角形.26、(8分)如图,在△ABC中,AB=AC=1,点D,E在直线BC上运动.设BD=x,CE=y.(l)如果∠BAC=300,∠DAE=l050,试确定y与x之间的函数关系式;(2)如果∠BAC=α,∠DAE=β,当α,β满足怎样的关系时,(l)中y与x之间的函数关系式还成立?试说明理由.27、(9分)如图,在平面直角坐标系中,已知OA=12cm,OB=6cm,点P从O点开始沿OA边向点A以1cm/s的速度移动:点Q从点B开始沿BO边向点O以1cm/s的速度移动,如果P、Q同时出发,用t(s)表示移动的时间(06t),那么:(1)设△POQ的面积为y,求y关于t的函数解析式。(2)当△POQ的面积最大时,△POQ沿直线PQ翻折后得到△PCQ,试判断点C是否落在直线AB上,并说明理由。(3)当t为何值时,△POQ与△AOB相似?28.(12分)如图1所示,在ABC△中,2ABAC,90A∠,O为BC的中点,动点E在BA边上自由移动,动点F在AC边上自由移动.(1)点EF,的移动过程中,OEF△是否能成为45EOF∠的等腰三角形?若能,请指出OEF△为等腰三角形时动点EF,的位置.若不能,请说明理由.(2)当45EOF∠时,设BEx,CFy,求y与x之间的函数解析式,写出x的取值范围.(3)在满足(2)中的条件时,若以O为圆心的圆与AB相切(如图2),试探究直线EF与⊙O的位置关系,并证明你的结论.第28题1ABCOEF第28题2ABCOEF参考答案1、A2、B3、B4、C5、C6、D7、B8、B9、C10、D11、5:3:1212、略13、6.414、8:515、9:416、7.517、418、)0,1()0,1(或19、4020、13675。21、解:(1)如图所示;…………………3分(2)设EF的影长为FP=x,可证:()ACOCCEMNONNP得:221.620.60.62x,解得:0.4x。所以EF的影长为0.4m.…………………6分22、BC=4m23、证(1)△EAC与△DBC全等,得到∠EAC=∠B,而∠B=∠ACB,得∠EAC=∠ACB故AE//BC…………………3分(2)△EAC∽△DBC得到∠EAC=∠B,而∠B=∠ACB,得∠EAC=∠ACB…………………6分24、解:(1)不相似.…………………1分∵在RtBAC△中,90A°,34ABAC,;在RtEDF△中,90D°,32DEDF,,12ABACDEDF∴,.ABACDEDF∴.RtBAC∴△与RtEDF△不相似.…………………3分(2)能作如图所示的辅助线进行分割.具体作法:作BAME,交BC于M;作NDEB,交EF于N.…………………5分由作法和已知条件可知BAMDEN△≌△.BAME∵,NDEB,AMCBAMB,FNDENDE,AMCFND∴.90FDNNDE∵°,90CB°,FDNC∴.∴AMCFND△∽△.…………………7分25、解:本题答案不惟一,如下图中△DE′F′就是符合题意的一个三角形.…………………6分26、(l)在△ABC中,AB=AC=1,∠BAC=300,∴∠ABC=∠ACB=750,∴∠ABD=∠ACE=1050,1分∵∠DAE=1050.∴∠DAB=∠CAE=750,又∠DAB+∠ADB=∠ABC=750,∴∠CAE=∠ADB∴△ADB∽△EAC∴ABBDECAC即11,y=1xxy所以…………………3分(2)当α、β满足关系式0902时,函数关系式1y=x成立理由如下:要使1y=x,即ABBDECAC成立,须且只须△ADB∽△EAC.ABMCDNFE由于∠ABD=∠ECA,故只须∠ADB=∠EAC.………………………6分又∠ADB+∠BAD=∠ABC=0902,∠EAC+∠BAD=β-α,…………………………………7分所以只0902=β-α,须即0902.…………………8分27、解(1)∵OA=12,OB=6由题意,得BQ=1·t=t,OP=1·t=t∴OQ=6-t∴y=21×OP×OQ=21·t(6-t)=-21t2+3t(0≤t≤6)…………………3分(2)∵2132ytt∴当y有最大值时,3t∴OQ=3OP=3即△POQ是等腰直角三角形。把△POQ沿PQ翻折后,可得四边形OPCQ是正方形∴点C的坐标是(3,3)∵(12,0),(0,6)AB∴直线AB的解析式为162yx当3x时,932y,∴点C不落在直线AB上…………………6分(3)△POQ∽△AOB时①若OQOPOAOB,即6612tt,122tt,∴4t②若OQOPOBOA,即6126tt,62tt,∴2t∴当4t或2t时,△POQ与△AOB相似。…………………9分28.解:如图,(1)点EF,移动的过程中,OEF△能成为45EOF°的等腰三角形.此时点EF,的位置分别是:①E是BA的中点,F与A重合.②2BECF.③E与A重合,F是AC的中点.…………………3分(2)在OEB△和FOC△中,135EOBFOC°,135EOBOEB°,FOCOEB∴.又BC∵,OEBFOC∴△∽△.BEBOCOCF∴.…………………5分BEx∵,CFy,2212222OBOC,2(12)yxx∴≤≤.…………………8分(3)EF与⊙O相切.OEBFOC∵△∽△,BEOECOOF∴.BEOEBOOF∴.即BEBOOEOF.又45BEOF∵°,BEOOEF∴△∽△.BEOOEF∴.…………………10分∴点O到AB和EF的距离相等.AB∵与⊙O相切,∴点O到EF的距离等于⊙O的半径.EF∴与⊙O相切.…………………12分
本文标题:相似图形单元测试题(含答案)
链接地址:https://www.777doc.com/doc-2712377 .html