您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 畜牧/养殖 > 高通量测序技术及其在农业上的应用
高通量测序技术及其在农业上的应用农业资源利用•一、高通量测序简介•二、高通量测序平台的介绍•三、高通量测序技术在农业上的应用1.1什么是高通量测序技术•高通量序技术(next-generationsequencing)是对传统Sanger法测序的一次革命性的改变,是一次可对几十万到几百万条DNA分子进行序列测定的高通量的测序技术,同时高通量测序使得对一个物种的转录组和基因组进行细致全貌的分析成为可能,所以又被称为深度测序(deepsequencing)。一.高通量测序技术1.2为什么要发展高通量测序技术•快速和准确地获取生物体的遗传信息对于生命科学研究一直具有十分重要的意义。对于每个生物体来说,基因组包含了整个生物体的遗传信息。测序技术能够真实地反映基因组DNA上的遗传信息,进而比较全面地揭示基因组的复杂性和多样性,因而在生命科学研究中扮演了十分重要的角色。•1977年Sanger等发明的双脱氧核苷酸末端终止法和Gilbert等发明的化学降解法,标志着第一代测序技术的诞生。•尽管第一代测序技术已经帮助人们完成了从噬菌体基因组到人类基因组草图等大量的测序工作,但由于其存在成本高、速度慢等方面的不足,并不是最理想的测序方法。经过不断的开发和测试,进入21世纪后,以Roche公司的454技术、Illumina公司的Solexa技术和ABI公司的SOLiD技术为标志的第二代测序技术诞生了。1.3高通量测序技术的特点•速度快•准确度高•成本低•覆盖度深•产出巨大二高通量测序技术的原理•高通量测序技术包括Roche公司的454技术、Illumina公司的Solexa技术和ABI公司的SOLiD技术。•下面对三种高通量测序技术的原理和特点分别进行具体介绍。454Pyrosequencing•基于磁珠的焦磷酸测序:A磁珠制备设备B454测序仪C454测序原理454测序流程与BaseCalling每次加入一种碱基然后再对荧光强度进行读取。碱基聚合反应产生焦磷酸ppi,ppi在硫化酶催化下生成ATP,ATP在荧光酶催化下激发荧光,荧光强度和焦磷酸的量成正比。•454技术的主要缺点是无法准确测量同聚物(homopolymer)的长度。例如当待测序列中出现Poly(A)的情况下,测序反应中会一次加上多个T,而加入T的数目只能从荧光信号的强度来推测,有可能造成结果不准确。也正是因为这个原因,454技术主要的错误不是来自核苷酸的替换,而是来自插入或缺失。•454技术最大的优势在于较长的读取长度,使得后继的序列拼接工作更加高效、准确。IlluminaSolexa简介•桥式PCR•边合成边测序•可逆终止物HiSeq2000Solexa的特点与主要应用•读长较短,100-150bp•通量高,25G每天,120-150G每Run•主要应用:RNA测序、表观遗传学研究ABISOLiD简介•SOLiDSequencingbyOligoLigation/Detection•Oligo连接测序:通过连接酶连接,再对oligo上荧光基团进行检测SOLiD5500xlABISOLiD测序前期制备A样品片段化磁珠连接B乳化PCR3‘末端修饰C磁珠富集转到测序玻片ABISOLiD测序原理测序流程依次加入五种引物进行五次测序。加入测序引物及加入oligo连接酶连接,激发荧光检测,循环一个流程,换一种引物再循环一个流程,五个流程结果叠加分析出序列。SOLiD的特点与主要应用•读长较短,50-75bp•精度高,可达Q40•通量高,20-30G每天,1Run可达120G•主要应用:基因组重测序、SNP检测等三种平台的技术差异平台454SolexaSOLiDPCR磁珠乳化PCR桥式PCR磁珠乳化PCR测序载体磁珠玻片玻片测序方式焦磷酸、荧光可逆终止物、荧光连接酶、荧光结果序列FastQFastQCSFastQ三、高通量测序技术在农业上的应用目前,高通量测序技术已广泛应用于动植物全基因组测序、基因组重测序、转录组测序、小RNAs测序和表观基因组测序等方面。下面对高通量测序技术在农业研究中的一些具体应作以介绍。3.1全基因组重测序全基因组重测序是对已知基因组序列的物种进行不同个体的基因组测序,并在此基础上对个体或群体进行差异性分析。全基因组重测序的个体,通过序列比对,可以找到大量的单核苷酸多态性位点(SNP)、插入缺失位点(InDel,Insertion/Deletion)、结构变异位点(SV,StructureVariation),通过生物信息学手段,分析不同个体基因组间的结构差异,同时完成注释。3.1.1利用重测序进行进化分析及SNP筛选Lai等(2010)对6个玉米(Zeamays)骨干自交系进行了全基因组重测序,共发现1273124个单核苷酸多态性位点(SNPs),得到30178个1~6bp的插入缺失位点(InDels),新发现的这些SNPs和InDels提供了1个高密度的全基因组标记信息,同时也鉴定出数百个基因获得与丢失变异(Presence/AbsenceVariations,PAVs)。3.1.2利用重测序技术鉴定突变体突变基因•Ashelford等(2011)对一个拟南芥突变体ebi-1的回交系进行基因组重测序,随后又通过对突变体的表达数据进行调查使得候选SNPs数目得以有效缩小,最终成功鉴定出1个在AtNFXL-2基因中引起ebi-1突变表型的SNPs位点该研究证实利用回交系材料可以降低遗传背景噪音,对其进行测序分析可有效减少候选SNPs数目。3.2全基因组denovo测序全基因组denovo测序也称为从头测序,是直接对某个物种进行基因组全测序,然后利用生物信息学方法对序列进行拼接和组装,得到完整的物种基因组序列、基因组测序对研究物种的基因组和功能基因信息、阐明物种的进化及其生长发育具有重要的意义。Huang等(2009)完成的黄瓜(CucumissativusL.)全基因组测序是世界上第一个完成全基因组测序的蔬菜作物,该工作的完成对黄瓜及其他近缘物种的遗传、改良基础生物学研究等具有重要的意义。3.3转录组测序研究转录组是指特定组织或细胞在某一功能状态下转录出来的所有RNA的总和,包括mRNA和非编码RNA。转录组测序是指通过新一代高通量测序技术对cDNA测序,利用统计相关reads数计算出不同mRNA的表达量,发现转录水平的SNP新的mRNA等,该技术可以从表达水平、等位基因特异性表达RNA编辑、含有重要信息的融合基因转录子差异剪接等方面展开相关研究。•Zhang等(2010)用8种不同水稻(OryzasativaL.)样品的不同组织于不同时期混合建库,通过转录组技术分析了栽培稻的第1张转录组图谱,结果在水稻8种组织样品中检测到大约27000个基因的表达和38000个转录单元,证实了约9000个基因发生可变剪接,同时鉴定出了234个由反式剪接产生的转录融合基因,表明融合基因比预期的更为普遍。3.4外显子组测序外显子组是指全部外显子区域的集合,该区域包含合成蛋白质所需的重要信息,涵盖了与个体表型相关的绝大部分功能性变异,能够直接发现与蛋白质功能变异相关的遗传突变。3.5小分子RNA测序小分子RNA是一类长约20~30个核苷酸的非编码RNA分子,其介导的转录后基因调控是植物中的一种新型基因调控机制。Moxon等利用454-FLX法分析了番茄叶片和果实中的小分子RNA表达情况,结果表明:番茄miR390和miR1917在果实中的表达量远高于在叶片中,而且miR1917的靶基因LeCTR1在番茄成熟过程中应答乙烯时表达量显著下调,因此认为这2个miRNA可能参与了番茄果实的发育过程。尽管高通量测序技术有诸多的优势,但其局限性也不容忽视。海量测序数据的产生及分析给研究者提出了巨大的挑战,如何充分挖掘隐藏在原始数据中的生物学意义及如何对数据进行分类存档成为一个亟待解决的课题。高通量测序技术不适合小规模测序,传统的Sanger测序法无疑还是最佳的选择,将与高通量测序技术长期并存,在短期内还不会被淘汰。另外,高通量测序技术只是研究的开端,现在我们所能解释的生物学现象和机制还很有限,即使获得了基因组信息,如何去解释和应用它,仍是一个长远的问题。
本文标题:高通量测序技术及其在农业上的应用
链接地址:https://www.777doc.com/doc-274142 .html