您好,欢迎访问三七文档
1课题:二次函数的应用(3)教学目标:1.使学生能够运用二次函数及其图象、性质解决实际问题,提高学生用数学的意识。2.进一步培养学生综合解题能力,渗透数形结合思想。教学重点:进一步培养学生将实际问题转化成数学问题的能力。教学难点:进一步培养学生综合解题能力,渗透数形结合思想。前置学习:杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B处,其身体(看成一点)的路线是抛物线13532xxy的一部分,如图:问题1:演员弹跳离地面的最大高度是多少米?问题2:已知人梯高BC=3.4米,在一次表演中,人梯到起跳点A的水平距离是4米,问这次表演是否成功?请说明理由.合作交流:例1.如图,公园要建造圆形喷水池.在水池中央垂直于水面处安装一个柱子OA,O恰在水面中心,OA=1.25m.由柱子顶端A处的喷头向外喷水,水流在各个方向沿形状相同的抛物线落下,为使水流形状较为漂亮,要求设计成水流在离OA距离为1m处达到距水面最大高度2.25m.(1)如果不计其它因素,那么水池的半径至少要多少米,才能使喷出的水流不致落到池外?(2)若水流喷出的抛物线形状与(1)相同,水池的半径为3.5m,要使水流不落到池外,此时水流的最大高度应达到多少米(精确到0.1m)?例2.如图所示是某拱桥的示意图.已知主桥拱为抛物线型,在正常水位下测得主拱宽24m,最高点离水面8m.(1)当水面下降2m,水面宽度将增加多少?(2)桥边有一浮在水面部分高4m,最宽处16m的河鱼餐船,试探索此船能否安全开到桥下?说明理由.2例3.你知道吗?平时我们在跳大绳时,绳甩到最高处的形状可近似地视为抛物线,如图所示,正在甩绳的甲、乙两名学生拿绳的手间距为4米,距地面均为1米,学生丙、丁分别站在距甲拿绳的手水平距离1米、2.5米处,绳甩到最高处时,刚好通过他们的头顶,已知学生丙的身高是1.5米,请你算一算学生丁的身高.拓展延伸:例4.如图,某广场设计的一建筑物造型的纵截面是抛物线的一部分,抛物线的顶点O落在水平面上,对称轴是水平线OC。点A、B在抛物线造型上,且点A到水平面的距离AC=4O米,点B到水平面距离为2米,OC=8米。(1)请建立适当的直角坐标系,求抛物线的函数解析式;(2)为了安全美观,现需在水平线OC上找一点P,用规格已确定的圆形钢管制作两根支柱PA、PB对抛物线造型进行支撑加固,那么怎样才能找到两根支柱用料最省(支柱与地面、造型对接方式的用料多少问题暂不考虑)时的点P?(无需证明)(3)为了施工方便,现需计算出点O、P之间的距离,那么两根支柱用料最省时点O、P之间的距离是多少?(请写出求解过程)反馈练习如图,一单杠高2.2米,两立柱之间的距离为1.6米,将一根绳子的两端栓于立柱与铁杠结合处,绳子自然下垂呈抛物线状。一身高0.7米的小孩站在离立柱0.4米处,其头部刚好触上绳子,求绳子最低点到地面的距离。3课后作业:1.如图,一位运动员在距篮下4m处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5m时,达到最大高度3.5m,然后准确落入篮圈,已知篮圈中心到地面的距离为3.05m.(1)建立如图所示的直角坐标系,求抛物线的函数关系式;(2)该运动员身高1.8m,在这次跳投中,球在头顶上方O.25m处出手,问:球出手时,他跳离地面的高度是多少米?2.如图,小明在一次高尔夫球争霸赛中,从山坡下O点打出一球向球洞A点飞去,球的飞行路线为抛物线,如果不考虑空气阻力,当球达到最大水平高度12米时,球移动的水平距离为9米.已知山坡OA与水平方向OC的夹角为30°,O、A两点相距38米.(1)建立如图所示的直角坐标系,求出球的飞行路线所在抛物线的解析式;(2)判断小明这一杆能否把高尔夫球从O点直接打入球洞A点?3.在排球赛中,一队员站在边线发球,发球方向与边线垂直,球开始飞行时距地面1.9米,当球飞行水平距离为9米时达最大高度5.5米,已知球场长18米,问这样发球是否会直接把球打出边线?44.某工厂大门是一抛物线型水泥建筑物,如图,大门地面宽AB=4米,顶部C离地面高度为4.4米,现有一辆满载货物的汽车欲通过大门,货物顶部距地面2.8米,装贷宽度为2.4米,请判断这辆汽车能否顺利通过大门?5.如图①是某地区的一座特大型桥梁,大桥为中承式悬索拱桥,大桥的主拱肋ACB是抛物线的一部分(如图②),跨径AB为100m,拱高OC为25m,抛物线顶点C到桥面的距离为17m.(1)请建立适当的坐标系,求该抛物线所对应的函数关系式;(2)七月份汛期来临,河水水位上涨,假设水位比AB所在直线高出1.96m,这时位于水面上的拱肋的跨径是多少?在不计桥面厚度的情况,一条高出水面4.6m的游船是否能够顺利通过大桥?6.如图,某公路隧道横截面为抛物线,其最大高度为6米,底部宽度OM为12米.现以O点为原点,OM所在直线为x轴建立直角坐标系.(1)直接写出点M及抛物线顶点P的坐标;(2)求这条抛物线的解析式;(3)若要搭建一个矩形“支撑架”AD-DC-CB,使C、D点在抛物线上,A、B点在地面OM上,则这个“支撑架”总长的最大值是多少?5家庭作业1.在一场足球赛中,一球员从球门正前方10米处将球踢起射向球门,当球飞行的水平距离是6米时,球到达最高点,此时球高3米,已知球门高2.44米,问能否射中球门?2.在一场篮球赛中,队员甲跳起投篮,当球出手时离地高2.5米,与球圈中心的水平距离为7米,当球出手水平距离为4米时到达最大高度4米,设篮球运行轨迹为抛物线,球圈距地面3米,问球是否投中?3.某跳水运动员在进行10m跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示的一条抛物线.在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面3210m,入水处距池边的距离为4m,同时运动员在距水面高度5m以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误.(1)求这条抛物线的函数关系式;(2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中调整好人水姿势时,距池边的水平距离为533m,问此次跳水会不会失误?并通过计算说明理由.64.如图,一座隧道的横截面由抛物线和长方形构成.长方形的长是8m,宽是2m,隧道最高点P距地面6m.(1)在如图1所示的坐标系中,求抛物线的表达式;(2)一辆货车高4m,宽2m,能否从该隧道内通过?为什么?(3)如果该隧道内设双行道,那么这辆货车是否可以通过,为什么?5.如图,在水平地面点A处有一网球发射器向空中发射网球,网球飞行路线是一条抛物线,在地面上落点为B.有人在直线AB上点C(靠点B一侧)竖直向上摆放无盖的圆柱形桶,试图让网球落入桶内.已知AB=4米,AC=3米,网球飞行最大高度OM=5米,圆柱形桶的直径为0.5米,高为0.3米(网球的体积和圆柱形桶的厚度忽略不计).(1)如果竖直摆放5个圆柱形桶时,网球能不能落入桶内?(2)当竖直摆放圆柱形桶多少个时,网球可以落入桶内?
本文标题:二次函数的应用
链接地址:https://www.777doc.com/doc-2745865 .html