您好,欢迎访问三七文档
二次函数极值的应用解二次函数极值的应用思路1、确定函数和自变量2、找等量列函数关系式3、利用函数极值的性质求极4、答出答案------------------------------------------------------------------------------------------1、(2009年烟台市)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?2、某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数ykxb,且65x时,55y;75x时,45y.(1)求一次函数ykxb的表达式;(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价x的范围.3、某水产品养殖企业为指导该企业某种水产品的养殖和销售,对历年市场行情和水产品养殖情况进行了调查.调查发现这种水产品的每千克售价1y(元)与销售月份x(月)满足关系式3368yx,而其每千克成本2y(元)与销售月份x(月)满足的函数关系如图所示.(1)试确定bc、的值;(2)求出这种水产品每千克的利润y(元)与销售月份x(月)之间的函数关系式;(3)“五·一”之前,几月份出售这种水产品每千克的利润最大?(4)最大利润是多少?2524y2(元)x(月)123456789101112第2题图2218yxbxcO6、(2009•兰州)如图,某公路隧道横截面为抛物线,其最大高度为6米,底部宽度OM为12米.现以O点为原点,OM所在直线为x轴建立直角坐标系.(1)直接写出点M及抛物线顶点P的坐标;(2)求这条抛物线的解析式;(3)思考若要搭建一个矩形“支撑架”AD-DC-CB,使C、D点在抛物线上,A、B点在地面OM上,则这个“支撑架”总长的最大值是多少?5、已知某种水果的批发单价与批发量的函数关系如图(1)所示.(1)请说明图中①、②两段函数图象的实际意义.(2)写出批发该种水果的资金金额w(元)与批发量m(kg)之间的函数关系式;在下图的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果.(3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图(2)所示,该经销商拟每日售出60kg以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大
本文标题:二次函数极值的应用
链接地址:https://www.777doc.com/doc-2745975 .html