您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 小学教育 > 五年级数学下册《质数和合数》教学设计
课题:质数和合数教学目标:1、理解质数和合数的概念,并能判断一个数是质数还是合数,会把自然数按约数的个数进行分类。2、培养学生自主探索、独立思考、合作交流的能力。3、培养学生敢于探索科学之谜的精神,充分展示数学自身的魅力。教学重点:1、理解掌握质数、合数的概念。2、初步学会准确判断一个数是质数还是合数。教学难点:区分奇数、质数、偶数、合数。教学过程:一、探究发现,总结概念:1、师:(出示三个同样的小正方形)每个正方形的边长为1,用这样的三个正方形拼成一个长方形,你能拼出几个不同的长方形?学生独立思考,然后全班交流。2、师:这样的四个小正方形能拼出几个不同的长方形?学生各自独立思考,想像后举手回答。3、师:同学们再想一下,如果有12个这样的小正方形,你能拼出几个不同的长方形?师:我看到许多同学不用画就已经知道了。(指名说一说)4、师:同学们,如果给出的正方形的个数越多,那拼出的不同的长方形的个数——,你觉得会怎么样?学生几乎是异口同声地说:会越多。师:确定吗?(引导学生展开讨论。)5、师:同学们,用小正方形拼长方形,有时只能拼出一种,有时拼出的长方形不止一种。你觉得当小正方形的个数是什么数的时候,只能拼一种?什么情况下拼得的长方形不止一种?并举例说明。先让学生小组讨论,然后全班交流,师根据学生的回答板书。师:同学们,像上面这些数(板书的3、13、7、5、11等数),在数学上我们把它们叫做质数,下面的这些数(4、6、8、9、10、12、14、15等数)我们把它们叫做合数。那究竟什么样的数叫质数,什么样的数叫合数呢?学生独立思考后,在小组内进行交流,然后再全班交流。引导学生总结质数和合数的概念,结合学生回答,教师板书:(略)6、让学生举例说说哪些数是质数,哪些数是合数,并说出理由。7、师:那你们认为“1”是什么数?让学生独立思考,后展开讨论。二、动手操作,制质数表。1、师出示:73。让学生思考着它是不是质数。师:要想马上知道73是什么数还真不容易。如果有质数表可查就方便了。(同学们都说“是呀”。)师:这表从哪来呢?(教师出示百以内数表)这上面是1到100这100个数,它不是质数表,你们能不能想办法找出100以内的质数,制成质数表?谁来说说自己的想法?(让学生充分发表自己的想法。)2、让学生动手制作质数表。3、集体交流方法。三、练习巩固:完成练习四第1、2题。四、课题小结:这节课你在激烈的讨论中有什么收获?(第23~26页)在数论中,有关质数和合数的理论一直吸引着数学家们不断探索。例如,我们已经知道质数的个数是无限的,但人们仍在不断地寻找更大的质数,1996年9月初美国的科学家找到了一个新的最大质数(21257787-1)。再比如,1742年,德国数学家哥德巴赫提出了著名的“哥德巴赫猜想”:任何大于2的偶数,都可以写成两个质数之和,这一数学王冠上的明珠至今仍吸引着无数人孜孜以求。因此,在质数和合数的世界里充满了神奇的数学魅力。在小学阶段,只是让学生在因数、倍数的基础上初步掌握质数、合数的概念,为后面学习求最大公因数、最小公倍数以及约分、通分打下基础。在本单元,要求学生能用自己的方法找出100以内的质数,并熟练判断20以内的数哪个是质数,哪个是合数。1.质数和合数。编写意图教材首先让学生找出1~20各数的全部因数,然后按照每个数的因数的个数进行分类。在此基础上给出质数、合数的概念。同时说明1既不是质数,也不是合数,以加深学生对某些特殊数的认识。教学建议教学时,可以先复习因数的概念,然后再让学生找出1~20各数的所有因数,并引导学生观察这些数的因数有什么不同,可以怎样分类。学生通过自主探索,会自觉地把这些数分成三类:只有因数1的;只有1和它本身这两个因数的;除了1和本身之外还有其他因数的。在分类的基础上,再引出质数、合数的概念,说明只有1和它本身两个因数的数叫质数,有两个以上因数的数叫合数,1既不是质数,也不是合数。学生掌握了质数和合数的概念以后,教师可以出示几个数,让学生判断是质数还是合数,也可以由学生自己分别写出几个质数和几个合数。2.例1。编写意图本例让学生运用质数的概念找出100以内的所有质数。学生通过此例可以学会找质数的一般方法“筛法”,即划掉每个质数的所有倍数(它本身除外),剩下的都是质数。由于小学用到的质数比较少,所以教材中只要求学生找出100以内的质数。这些质数不必要求学生都背熟,但是熟悉20以内的质数还是有必要的。分解质因数的内容虽然不作为正式教学内容,但作为一种重要的方法技能,教材还是把它安排在“你知道吗?”中进行介绍,供学生阅读参考。教学建议教学时,尽量采取让学生自己完成任务的教学方式。学生在找100以内的质数时,所用的方法可能是多样化的。例如,有的学生是先找每个数分别有几个因数,然后再根据质数和合数的意义进行判断。还有的学生采用的是“排除法”,因为质数只有因数1和它本身,所以,每个质数后面该质数的所有倍数都是合数,如2是质数,但是2的倍数(2本身除外)如4,6,8,10,…都是合数,3是质数,它的倍数(3本身除外)如6,9,12,15,…也都是合数。因此,只要把所有质数后面的倍数都划去,剩下的就都是质数了。划完后,还可以让学生体会一下划到几的倍数就可以了。由于自然数是无限的,所以质数和合数也是无限的。本例中只要求学生列出100以内的质数表,这是因为较大的质数不常用。但20以内的质数用得较多,最好应提醒学生逐步记住。到本节教材为止,已经出现了因数、倍数、奇数、偶数、质数、合数等概念,有些概念学生容易混淆,如学生往往把质数和奇数、合数和偶数混同起来,因此教学时应注意让学生辨析这些概念。例如,可让学生按照不同的标准对自然数进行分类,按是不是2的倍数可以把整数分成偶数和奇数两类,按约数的多少把非零自然数分成质数、合数和1三类。也可以结合学生自行整理的质数表,让学生观察和思考:是不是所有的质数都是奇数?引导学生举出反例,如2是质数,但它不是奇数;也不是所有的奇数都是质数,如9、35都是奇数,但都不是质数;也不是所有的偶数都是合数,如偶数2就不是合数。3.关于练习四中一些习题的说明和教学建议。第1题,主要是让学生对一些概念进一步加以区别。判断时,要引导学生说明理由或举出反例。如第(3)小题,使学生进一步记住1既不是质数,也不是合数。第(4)小题,因为偶数2是质数,它和其他质数的和都是奇数,因此,题中的说法不正确。第3题,让学生根据条件求数,要求学生对20以内的质数比较熟悉。如第1小题,可以先通过“两个数的积是21”知道这两个数是21的一对因数,这样的因数只有3和7或1和21,而前者正好满足3+7=10且都是质数。再如第2小题,满足“两个质数之和是20”的有两对质数:3和17、7和13,而后者又同时满足7×13=91。第4题,是带着练习2、5、3的倍数的特征。第5题,是用游戏的形式引出“哥德巴赫猜想”,使学生通过举例的方式看到:大于2的偶数,可以表示为两个质数之和。但举例只能举出有限个,是不是所有大于2的偶数都满足这一结论呢?从而引起学生继续探求的兴趣,也很自然地引出下面的阅读材料。数和合数教学设计及评析范范之辈发表于2007-12-2513:02:000推荐教学目标:1.培养学生自主探索、独立思考、合作交流的能力。2.培养学生敢于探索科学之谜的精神,充分展示数学自身的魅力。3.理解质数和合数的概念,并能判断一个数是质数还是合数,会把自然数按约数的个数进行分类。学习条件:经调查得知五年级的学生有百分之四十对质数、合数有了解。教学过程:活动一:以新闻引入活动目的:创设情境,激发学生主动探索的欲望.活动过程:刚才大家提起“歌德巴赫猜想”,赵老师也很感兴趣,而且一直在搜集这方面材料,点击课件,很巧前一段北京日报2002,3,20,第九版有这样的报道:两年前,英美两家出版社悬赏100万美元,限期两年求征“歌德巴赫猜想之解”,截稿日期就在今天3月20日。也就是说“哥”对于全世界来说仍是一个不解之谜.小时候就听说有人把“歌德巴赫猜想”比做数学王冠上的明珠,点击课件,今天竞有人悬赏100万美元求征“歌德巴赫猜想之解”,歌德巴赫猜想到底是什麽呀?有兴趣看看吗?点击课件出示:大于4的偶数总能写成两个奇素数之和。师:谁来读一下.著名的哥德巴赫猜想.生读.师:就这样一句话呀。你读懂了吗?你读懂什麽啦?生:大于4的偶数能举个例子吗?6、8、10……奇数:什麽是奇数?素数(质数):什麽样的数是质数?师:哦你们是这样理解的.看来质数与约数有直接关系。你从那知道的?教学反思:这样的教学,使学生悬念顿生,兴趣盎然,思维处于欲罢不能的愤悱状态。此时教师巧妙地把握住时机,导入新课。这样从新闻入手,激发了全体学生的兴趣,使课堂气氛顿时活跃起来.为本节课的顺利实施提供了有效的条件。活动二:理解质数合数的意义活动目的:让学生自己去经历观察、实验、猜想、证明等数学活动的过程,发展合情推理能力,初步的演绎思维能力及解决问题的能力。活动过程:1、认识质数.师:看来你们对这个猜想已经初步理解了,我们能试着写一个符合这个猜想的式子吗。生:8=3+53、5是奇数吗?是质数吗?10=11+33、11是奇数吗?是质数吗?14=7+7同意吗?为什麽?师:都有兴趣举,拿出本来,看谁举的多。生:举例。你举了几个.师把最多的式子板书黑板.师:还有补充吗?师:我们按照自己对“哥德巴赫猜想”的理解写出了这些式子,是否都符合这个猜想呢?师:符号右边都是奇数吗?都是质数吗?质数有什麽共同特点?生:除了1和它本身不再有其他约数的数叫质数。师:能举出一个质数吗?5是质数,为什麽?17是质数,为什麽?师:都想举拿出本举看谁举得多?四人交流一下。师:生汇报。这些数都是质数,到底什麽是质数。板书:质数2、认识合数。.师:9这个数为什麽不是质数?我们把这样的数叫什麽数。生:合数,为什么?师:谁能再举一个合数。什麽是合数?板书:合数.3、今天我们学习了质数和合数.板书课题:质数合数有问题吗?4、判断数字卡片是质数还是合数?出示:5、9为什麽?抢答:3、19、49、63、47、39、121、2、1、31、5730……师:2为什麽是质数?1为什麽不是质数也不是合数?教学反思:教师在引导学生发现判断质数、合数方法的过程中,自始至终都没有以一个“裁判者”的身份出现,而是力求使自己成为学生学习的促进者、参与协商,鼓励和监控学生的讨论和练习过程,但不控制学生的讨论结果。同时教师也把自己当作学习者,与学生一道共同完成学习任务。当时的课堂气氛和谐、民主。收到了良好的效果。活动三:学生自己选择要研究的问题进行活动。活动目的:教师要主动把课堂教学活动的主角位置让给学生,把课堂教学活动的时间多分给学生使用,把课堂教学活动的内容多留给学生处理解决,教师做好组织、设计、指导或点拨,主导者要让贤于主体者,采用这一教法,可让学生认识“自我”,感受到“自我”的价值。爱因斯坦说过:“提出一个问题比解决一个问题更重要。”活动过程:1.你还想研究质数合数的那些知识?(学生提出很多)如:(1)找最大质数.(2)如何判断一个数是质数还是合数.(3)自然数中是不是除了质数就是合数……2.请各小组选一个你们喜欢研究的问题,开始研究吧.3.汇报研究成果.教学反思:教师在课后设计了这样一个环节,你还想研究质数、合数有关的那些知识。这一过程,教师充分让位还权,放手让学生去探究,留足学生探究的时间与空间,关注有差异的学生去发现,去完成自己的学习目标,使每个学生都积极参与“做”数学,能在课上研究的问题就在课上处理,留下的问题让学生向家长、老师、书籍、网络……学习,这样设计已经不只局限于使学生理解、掌握知识,更多关注的是培养学生探究知识能力,着眼学生的可持续发展。体现出学生学习的主体参与意识,此环节的处理,虽然耽误了一些时间,但我想还是值得的.教师应以学生为本,而不应以备好的教案为本.活动四:回到开头。活动目的:教师本着以人的发展为本的教学理念,着眼于学生的可持续发展.活动过程:1.我们学习了质数和合数,对于哥德巴赫猜想中的奇素数你是怎麽理解的?点击课件
本文标题:五年级数学下册《质数和合数》教学设计
链接地址:https://www.777doc.com/doc-2749102 .html