您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 理学 > 中考复习二次函数知识点总结
中考复习专题——二次函数知识点总结一、二次函数的有关概念:1、二次函数的定义:一般地,形如2yaxbxc(abc,,是常数,0a)的函数,叫做二次函数。2、二次函数解析式的表示方法(1)一般式:2yaxbxc(a,b,c为常数,0a);(2)顶点式:2()yaxhk(a,h,k为常数,0a);(3)两根式:12()()yaxxxx(0a,1x,2x是抛物线与x轴两交点的横坐标).二、二次函数2yaxbxc图象的画法1.基本方法:描点法注:五点绘图法。利用配方法将二次函数2yaxbxc化为顶点式2()yaxhk,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y轴的交点0c,、以及0c,关于对称轴对称的点2hc,、与x轴的交点10x,,20x,(若与x轴没有交点,则取两组关于对称轴对称的点).2.画草图抓住以下几点:开口方向,对称轴,顶点,与x轴的交点,与y轴的交点.三、二次函数的图像和性质1.二次函数2yaxbxc的性质(1).当0a时,抛物线开口向上,对称轴为2bxa,顶点坐标为2424bacbaa,.当2bxa时,y随x的增大而减小;当2bxa时,y随x的增大而增大;当2bxa时,y有最小值244acba.(2).当0a时,抛物线开口向下,对称轴为2bxa,顶点坐标为2424bacbaa,.当2bxa时,y随x的增大而增大;当2bxa时,y随x的增大而减小;当2bxa时,y有最大值244acba.2.二次函数2yaxhk的性质:四、二次函数图象的平移概括成八个字“左加右减,上加下减”.五、二次函数与一元二次方程:一元二次方程20axbxc是二次函数2yaxbxc当函数值0y时的特殊情况.图象与x轴的交点个数:①当240bac时,图象与x轴交于两点1200AxBx,,,12()xx,其中的12xx,是一元二次方程200axbxca的两根.这两点间的距离2214bacABxxa.②当0时,图象与x轴只有一个交点;③当0时,图象与x轴没有交点.1'当0a时,图象落在x轴的上方,无论x为任何实数,都有0y;2'当0a时,图象落在x轴的下方,无论x为任何实数,都有0y.六、二次函数中的符号问题1.二次项系数aa决定了抛物线开口的大小和方向,a的正负决定开口方向,a的大小决定开口的大小.2.一次项系数ba的符号开口方向顶点坐标对称轴性质0a向上hk,X=hxh时,y随x的增大而增大;xh时,y随x的增大而减小;xh时,y有最小值k.0a向下hk,X=hxh时,y随x的增大而减小;xh时,y随x的增大而增大;xh时,y有最大值k.在二次项系数a确定的前提下,b决定了抛物线的对称轴.⑴在0a的前提下,当0b时,02ba,即抛物线的对称轴在y轴左侧;当0b时,02ba,即抛物线的对称轴就是y轴;当0b时,02ba,即抛物线对称轴在y轴的右侧.⑵在0a的前提下,结论刚好与上述相反,即当0b时,02ba,即抛物线的对称轴在y轴右侧;当0b时,02ba,即抛物线的对称轴就是y轴;当0b时,02ba,即抛物线对称轴在y轴的左侧.总结起来,在a确定的前提下,b决定了抛物线对称轴的位置.总结:“左同右异”3.常数项c⑴当0c时,抛物线与y轴的交点在x轴上方,即抛物线与y轴交点的纵坐标为正;⑵当0c时,抛物线与y轴的交点为坐标原点,即抛物线与y轴交点的纵坐标为0;⑶当0c时,抛物线与y轴的交点在x轴下方,即抛物线与y轴交点的纵坐标为负.总结起来,c决定了抛物线与y轴交点的位置.七、二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1.已知抛物线上三点的坐标,一般选用一般式;2.已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3.已知抛物线与x轴的两个交点的横坐标,一般选用两根式;4.已知抛物线上纵坐标相同的两点,常选用顶点式.八、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1.关于x轴对称2yaxbxc关于x轴对称后,得到的解析式是2yaxbxc;2yaxhk关于x轴对称后,得到的解析式是2yaxhk;2.关于y轴对称2yaxbxc关于y轴对称后,得到的解析式是2yaxbxc;2yaxhk关于y轴对称后,得到的解析式是2yaxhk;3.关于原点对称2yaxbxc关于原点对称后,得到的解析式是2yaxbxc;2yaxhk关于原点对称后,得到的解析式是2yaxhk;4.关于顶点对称2yaxbxc关于顶点对称后,得到的解析式是222byaxbxca;2yaxhk关于顶点对称后,得到的解析式是2yaxhk.5.关于点mn,对称2yaxhk关于点mn,对称后,得到的解析式是222yaxhmnk根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式。
本文标题:中考复习二次函数知识点总结
链接地址:https://www.777doc.com/doc-2760939 .html