您好,欢迎访问三七文档
中考模拟卷数学一、选择题(本题共10小题,每小题3分,共30分)1.(3分)(2013•遵义)如果+30m表示向东走30m,那么向西走40m表示为()A.+40mB.﹣40mC.+30mD.﹣30m2.“着力扩大投资,突破重点项目建设”是贵阳经济社会发展的主要任务之一.据统计,贵阳市2014年全社会固定资产投资达1762亿元,把1762亿元这个数字用科学记数法表示为()A.8101762B.1010762.1C.1110762.1D.1210762.13.“服务他人,提升自我”,七一学校积极开展志愿者服务活动,来自初三的5名同学(3男两女)成立了“交通秩序维护”小分队,若从该小分队中任选两名同学进行交通秩序维护,则恰好是一男一女的概率是()4.如图,直线1l∥2l,若∠A=125,∠B=85,则21()A.30B.35C.36D.405.已知一个正棱柱的俯视图和左视图如图,其则主视图为()6.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CDB.∠BAC=∠DACC.∠BCA=∠DCAD.∠B=∠D=90°7.一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则折线大致表示两车之间的距离y(千米)快车行驶时间t(小时)之间的函数图像是()8.分式的值为零,则x的值为()9.已知样本数据1,0,6,1,2,下列说法不正确的是()A.中位数是6B.平均数是2C.众数是1D.极差是610.如图,边长为2的正方形ABCD中,P是CD的中点,连接AP并延长,交BC的延长线于点F,作△CPF的外接圆⊙O,连接BP并延长交⊙O于点E,连接EF,则EF的长为()A.23B.35C.553D.554二、填空题(本题共5小题,每小题4分,共20分.)11.已知x=﹣2是方程x2+mx﹣6=0的一个根,则方程的另一个根是.12.已知二次函数222mxxy,当2x时,y的值随x值的增大而增大,则实数m的取值范围是.13.对正方形ABCD进行分割,如图1,其中E、F分别是BC、CD的中点,M、N、G分别是OB、OD、EF的中点,沿分化线可以剪出一副“七巧板”,用这些部件可以拼出很多图案,图2就是用其中6块拼出的“飞机”。若△GOM的面积为1,则“飞机”的面积为.14.有6张背面完全相同的卡片,每张正面分别有三角形、平行四边形、矩形、正方形、梯形和圆,现将其全部正面朝下搅匀,从中任取一张卡片,抽中正面画的图形是中心对称图形的概率为.15.如图,已知A1、A2、A3、…、An、An+1是x轴上的点,且OA1=A1A2=A2A3=…=AnAn+1=1,分别过点A1、A2、A3、…、An、An+1作x轴的垂线交直线y=2x于点B1、B2、B3、…、Bn、Bn+1,连接A1B2、B1A2、B2A3、…、AnBn+1、BnAn+1,依次相交于点P1、P2、P3、…、Pn.△A1B1P1、△A2B2P2、△AnBnPn的面积依次记为S1、S2、S3、…、Sn,则Sn为.三.解答题:16.(本题满分8分)17.(本题满分10分)某班数学科代表小华对本班上期期末考试数学成绩作了统计分析,绘制成如下,频数、频率统计表和频数分布直方图,请你根据图表提供的信息,解答下列问题:(1)频数、频率统计表中,a=;b=;(2)请将频数分布直方图补充完整;(3)小华在班上任选一名同学,该同学成绩不低于80分的概率是多少?18.(本题满分10分)我市某中学在创建“特色校园”的活动中,将本校的办学理念做成宣传牌(AB),放置在教学楼的顶部(如图所示).小明在操场上的点D处,用1米高的测角仪CD,从点C测得宣传牌的底部B的仰角为37°,然后向教学楼正方向走了4米到达点F处,又从点E测得宣传牌的顶部A的仰角为45°.已知教学楼高BM=17米,且点A,B,M在同一直线上,求宣传牌AB的高度(结果精确到0.1米,参考数据:≈1.73,sin37°≈0.60,cos37°≈0.81,tan37°≈0.75).19.(本题满分10分)现有两组相同的扑克牌,每组两张,两张牌的牌面数字分别是2和3,从每组牌中各随机摸出一张牌,称为一次试验.(1)小红与小明用一次试验做游戏,如果摸到的牌面数字相同小红获胜,否则小明获胜,请用列表法或画树状图的方法说明这个游戏是否公平?(5分)(2)小丽认为:“在一次试验中,两张牌的牌面数字和可能为4、5、6三种情况,所以出现‘和为4’的概率是31”,她的这种看法是否正确?说明理由.20.(本题满分10分)菱形ABCD中,∠B=60°,点E在边BC上,点F在边CD上.(1)如图1,若E是BC的中点,∠AEF=60°,求证:BE=DF;(2)如图2,若∠EAF=60°,求证:△AEF是等边三角形.21.(本题满分10分)为支援四川雅安地震灾区,某市民政局组织募捐了240吨救灾物资,现准备租用甲、乙两种货车,将这批救灾物资一次性全部运往灾区,它们的载货量和租金如下表:22.(本题满分10分)平面直角坐标系中,点A的坐标是(4,0),点P在直线y=-x+m上,且AP=OP=4.求m的值.23.(本题满分10分)如图,A,P,B,C是半径为8的⊙O上的四点,且满足∠BAC=∠APC=60°,(1)求证:△ABC是等边三角形;(2)求圆心O到BC的距离OD.24.(本题满分12分)已知:如图1,在面积为3的正方形ABCD中,E、F分别是BC和CD边上的两点,AE⊥BF于点G,且BE=1.(1)求证:△ABE≌△BCF;(2)求出△ABE和△BCF重叠部分(即△BEG)的面积;(3)现将△ABE绕点A逆时针方向旋转到△AB'E'(如图2),使点E落在CD边上的点E'处,问△ABE在旋转前后与△BCF重叠部分的面积是否发生了变化?请说明理由25.(本题满分12分)如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣3,0)、B(1,0)、C(0,3)三点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合),过点P作y轴的垂线,垂足点为E,连接AE.(1)求抛物线的函数解析式,并写出顶点D的坐标;(2)如果P点的坐标为(x,y),△PAE的面积为S,求S与x之间的函数关系式,直接写出自变量x的取值范围,并求出S的最大值;(3)在(2)的条件下,当S取到最大值时,过点P作x轴的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为点P′,求出P′的坐标,并判断P′是否在该抛物线上.
本文标题:中考模拟卷
链接地址:https://www.777doc.com/doc-2762037 .html