您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 企业财务 > 不同DFT方法的比较与选择
不同DFT方法的比较与选择仅做参考非双杂化泛函的最佳选择:计算碳团簇用B3LYP计算硼团簇用TPSSh计算双核金属用PBE、BP86,勿用杂化(seeJCTC,8,908)计算NMR用KT2,M06-L,VSXC,OPBE,PBE0计算普通价层垂直激发用PBE0(误差约在0.25eV),M06-2X也凑合计算电荷转移、里德堡垂直激发,以及各种绝热激发能用wB97XD、CAM-B3LYP、M06-2X计算极化率、超极化率追求稳妥用PBE0,追求精度用CAM-B3LYP、HCTC(AC)计算双光子吸收截面用CAM-B3LYP计算ECD用B3LYP、PBE0计算HOMO/LUMOgap用HSE、B3PW91(整体来说这个好,HSE的杂化参数有点依赖于体系)计算热力学数据(含势垒)用M06-2X(加上DFT-D3(BJ)校正更好)计算多参考态特征强的体系用M11-L计算卤键:M06-2X(及SCS(MI)MP2。最好用ECP。基组最好3zeta+弥散,若不加弥散则CP必须考虑)计算弱相互作用用wB97XD、M06-2X(加上DFT-D3(BJ)校正更好)。很大体系弱相互作用用PBE-D2/TZVP+Counterpoise且包含DFT-D三体色散校正项其它情况或模棱两可的时候用B3LYP(加上DFT-D3(BJ)校正更好)。允许更大计算量追求更可靠结果用M11、wB97XD。---------动能泛函:Thomas-Fermi:由均匀电子气模型推出。精度太低,一般低估10%动能,是精确动能泛函向rho的Taylor展开的一阶项。LDA系列。明显低估了gap。Xα:Slater1951年提出的LDA交换泛函。X代表eXchange,可调参数α原先为1,为3/4时对原子和分子体系更好。为2/3时与Dirac推出来的一样VWN3:LDA相关泛函。高斯中默认用的VWN,比VWN5略好。有拟合参数。VWN5:LDA相关泛函。有拟合参数。PW(Perdew–Wang):LDA相关泛函。也叫PWL,L=local。有拟合参数。算弱相互作用虽然差但是比VWN强不少,适合石墨层间弱相互作用计算。SPWL=S+PW,L表示local,即PW的LDA泛函SVWN3,SVWN5=S+VWN3/VWN5。平衡结构、谐振频率、电荷矩方面不错,但是键能差(因为拉长过程中电子从较均匀变成很不均匀)。G2热力学数据比HF好。对第一行过渡金属络合物,Metal-ligand键长被低估,但比MP2好。GGA系列。注意GGA的交换项、相关项一般包含了LSDA项。严重低估了CT、里德堡激发的能量,明显低估了gap。B86:GGA交换泛函LG(LacksandGordon):1993。GGA交换泛函B88:GGA交换泛函,含一个参数拟合自稀有气体原子交换能数据。OPTX(OPTimizedeXchange):GGA交换泛函,参数拟合自HF交换能Gill96:GGA交换泛函CAM(A),CAM(B):GGA交换泛函FT91(Filatov-Thiel):GGA交换泛函LYP(Lee,YangandParr):GGA相关泛函,四个参数拟合自氦原子实验数据,常结合B88和OPTX而成BLYP和OLYP。注意LYP已经包含了VWN项。B96:GGA相关泛函B97:GGA交换相关泛函。Becke1997年弄出。含10个参数拟合自G2测试集,密度来自LDA/无基组(纯数值解)。原子化能MAE1.8kcal/mol,此值已经接近G2了。HCTH93,HCTH120,HCTH147,HCTH407(Hamprecht,Cohen,TozerandHandy):GGA交换相关泛函,数字是指15个参数拟合自多少个实验数据HCTH(AC):GGA交换相关泛函。1998年弄出。AC=asymptoticallycorrected,当远距离时将HCTH交换相关势用拥有正确渐进行为的势代替。计算极化率、超极化率好,用于TDDFT算价层和高阶激发态都很好(性能=PBE1PBE)。PBE(Perdew–Burke–Ernzerhof):1996。GGA交换,相关泛函,不含参数。G2MAE8.6kcal/mol不算太好,G2扩展集生成焓MAE38.2kcal/mol很糟。算pi-pi、氢键弱相互作用在GGA里算很好的(但仍然不够好)。RPBE用于计算周期性。mPBE含一个参数。硼团簇用它最好。OPBE=OPTX交换+PBE相关泛函。P86(Perdew1986):GGA交换,相关泛函。参数拟合自氖原子相关能。PW91(Perdew–Wang1991):GGA交换,相关泛函。无参数。简称为PWPW。结合6-31G*算分子间电荷转移积分好。mPW:GGA交换泛函。Adamo和Barone1998年弄的。在PW91交换泛函基础上进行了改进,以更好地计,算弱相互作用的版本,但对弱相互作用也就那么味儿事,虽然比B3LYP肯定好,范德华复合物不会解离。结合PW91相关泛函的mPWPW91算生成热很好。LB94(vanLeeuwenandBaerends1994):GGA交换相关泛函。有正确的-1/r收敛行为,但收敛到0而不是应有的常数。靠近核的地方有缺陷。势函数不能通过能量泛函求导而得。TDDFT计算高阶激发态、极化率好。KT1,KT2,KT3(Keal–Tozer):LDA和OPTX交换项和LYP组合,再加上一个梯度校正项。组合参数靠拟合而来,适合计算NMR磁屏蔽常数,因为拟合的数据包括这部分。Dalton支持XLYP:B88+PW91+LYP。BLYP:B88+LYP。键长略偏长。很适合算多组态效应强的体系。BP86:B88+P86。长期被用来做过渡金属络合物,比较准,但也有坏的时候。算金属氧化物O17的化学位移不错。BPW91:B88+PW91。G2原子化能为5.7kcal/molBPBE:B88+PBECAM(A)LYP:CAM(A)+LYP。几何结构好,原子化能差CAM(B)LYP:CAM(B)+LYP。几何结构差,原子化能还成BW(Becke-Wigner):1995年Stewart和Gill弄的。重新参数化LYP,并与B88组合。SSB:2009,也叫SSB-sw。PBE对于pi-pi、氢键好,OPBE此时差;OPBE对于SN2、自旋态好,PBE此时差。于是将OPTX(即OPBE的交换部分)和PBE的交换泛函以某种函数形式进行混合,这是sw的由来,即switch,在不同情况下仿佛切换OPTX和PBE交换泛函。meta-GGA系列(M-GGA)LAP:M-GGA相关泛函。Proynov,Vela和Salahub1994年弄出.B95(也叫B96):M-GGA相关泛函。Becke1996年弄的。极少几个不含自相关作用的泛函。BB95:B88+B95。M-GGA交换相关泛函VSXC(Voorhis–ScuseriaeXchange–Correlation):M-GGA交换相关泛函。含21个拟合实验数据的参数。G2扩展集生成焓MAE8.8kcal/mol很好。τ-HCTH:TPSS(Tao–Perdew–Staroverov–Scuseria):M-GGA交换相关泛函。PBE的改进、PKZB(Perdew–Kurth–Zupan–Blaha)泛函的进一步发展。KCIS(Krieger-Chen-Iafrate-Savin):M-GGA相关泛函。M06-L:对过渡金属、金属有机不错,对主族一般。相当于M06系列中去掉了HF交换项成分,L带表Local。对于TDDFT计算,非杂化泛函里他是最好的。算HOMO-LUMOgap比一般的GGA要好一点,但不如HSE。M11-L:远、近距离时交换势不同,参数拟合自各类问题的能量数据。对多参考态体系极好,远胜于其它泛函,对于其它问题与M11差不多或更差。激发态问题不明。Q-Chem4.0、GAMESS-US可以算。Hybrid-GGA:算双核金属都不如GGA好B3PW91:B88+PW91+X。Becke1993年弄出。三个参数来自拟合G2数据和分子能量。和B3LYP在伯仲之间,有时这个好有时B3LYP好,亲和势略好一丁点。计算半导体gap特别好,强于B3LYP。B3LYP:X+B88+LYP+Slater+VWN3。1994年Stephens提出,系数同B3PW91。除了对弱相互作用不好(尤其是范德华作用奇烂,如N2、Ne、He、苯二聚体解离曲线没有极小点)、TDDFT算电荷转移激发态和高阶里德堡态不好、双核金属键不好、多参考态体系不如纯密度泛函、某些反应过程描述不好或错误以外没什么明显软肋,是整体最好的泛函。一般性能在MP2与MP4之间,速度比MP2快得多。对氢键还不错,UB3LYP算键解离曲线相当不错(Jensen,p370)。这类杂化泛函算强关联体系不错。大基组下G2误差约2kcal/mol多,算原子化能好;G2扩展集生成焓10.6kcal/mol不错。做配合物也不错。算振动频率不错,用校正因子后比QCISD还好点。离子化势误差平均在0.2eV及以下,亲和势偏差为0.13eV左右。结合POL基组算偶极矩很好,甚至比得上CCSD(T)。算极化率还成,但逊于PBE1PBE、MP2。算拉曼强度好,等于或强于MP2。GIAO算H1化学位移不错,计算C13的也就GGA的水平,算金属化学位移很准,计算核自旋-自旋耦合常数、超精细耦合常数准。研究氢转移、开环过渡态不错,DA环加成、SN2不好、氢抽取不好,这也是所有传统DFT泛函的通病。用在碳团簇不错,但用在硼团簇不好(JCP,136,104301)。计算双核金属化合物的双核金属键不好,这是杂化泛函的通病。有低估势垒的倾向。对F+H2-HF+H完全失败,没有预测势垒而是能量单调下降。据说对金属配合物高估了高自旋态的稳定性,但精确交换项系数降为0.15可改善(JCP,117,4729、TCA,107,48)。mPW1:H-GGA交换泛函。Adamo和Barone1998年弄的。在PW91交换泛函上做了改进,并引入了HF项(参数不是靠拟合的)。比mPW对范德华作用计算还更好点。结合PW91相关泛函构成的mPW1PW91对弱相互作用还凑合,在传统泛函当中算好的,比如研究N2-N2二聚体,基本行为还是正确的,但势阱深度差得很多。结合6-31G*算寡聚物gap很适合,挺接近实验值。B3P86:B88+P86+X。比B3LYP差不少,比GGA略好,但有时仅比SVWN略好。不建议使用,尤其算亲和势很糟糕。BH&HLYP:B88+LYP+X。1993年弄出。很偶尔地弱相互作用好,但基本属于侥幸,算弱相互作用并不适合,明显高估氢键。PBE1PBE(也叫PBE0):H-GGA交换相关泛函。PBE基础上引入25%HF交换项,掺入的成分是由理论推来,无拟合参数。热力学不如B3LYP。用于TDDFT算价层和高阶激发态都很好(尽管并未特别考虑势函数的收敛行为,效果比起用了LC-还是有不小差距),算极化率也很好,强于B3LYP、PBE。算C13化学位移好,和MP2相仿佛。X3LYP:B88+PW91+LYP+X。作者号称这对弱相互作用好,算水二聚体、稀有气体二聚体也确实不错,但是用于堆叠差。O3LYP:OptX+LYP+XBMK:H-GGA交换相关泛函。B97-1:H-GGA交换相关泛函。Hamprecht1998年弄出。重新拟合B97参数,TZ2P基组,用自洽密度(反复用来自身方法下的密度)。对弱相互作用不错(但从绝对误差上看也不好),pi-pi差。研究卤键很好。B98:H-GGA交换相关泛函。Schmider和Becke1998年弄出,含10个拟合自G2扩展集的参数。MAE1.9kcal/mol。对弱相互作用不错。算C13化学位移好,和MP2相仿佛。B1B96(也叫B1B95):B88+B96+X(28%)。H-GGA交换相关泛函。Becke1996年弄出来。一个拟合原子化能参数,MAE2.0kcal/mol。依赖动能密度。K2-BVWN(k
本文标题:不同DFT方法的比较与选择
链接地址:https://www.777doc.com/doc-2785392 .html