您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 企业财务 > 《西方经济学》高鸿业4版课后习题答案
5假定某消费者关于某种商品的消费数量Q与收入M之间的函数关系为M=100Q2。求:当收入M=6400时的需求的收入点弹性。解:由以知条件M=100Q2可得Q=100M于是,有:1001100121MddMQ进一步,可得:Em=21100/)(10010011001212MQMMQMddMQ观察并分析以上计算过程即其结果,可以发现,当收入函数M=aQ2(其中a0为常数)时,则无论收入M为多少,相应的需求的点弹性恒等于1/2.10假定肉肠和面包是完全互补品.人们通常以一根肉肠和一个面包卷为比率做一个热狗,并且以知一根肉肠的价格等于一个面包的价格.(1)求肉肠的需求的价格弹性.(2)求面包卷对肉肠的需求的交叉弹性.(3)如果肉肠的价格面包的价格的两倍,那么,肉肠的需求的价格弹性和面包卷对肉肠的需求的交叉弹性各是多少?解:(1)令肉肠的需求为X,面包卷的需求为Y,相应的价格为PX,PY,且有PX=PY,.该题目的效用最大化问题可以写为:MaxU(X,Y)=min{X,Y}s.t.MYPXPYX解上速方程组有:X=Y=M/PX+PY,.由此可得肉肠的需求的价格弹性为:YXXYXXYXXdXPPPPPMPPPMXPYXE2由于一根肉肠和一个面包卷的价格相等,所以,进一步,有Edx=Px/PX+PY=1/2(2)面包卷对肉肠的需求的交叉弹性为:YXXYXXYXXYXPPPPPMPPPMYPYYE2由于一根肉肠和一个面包卷的价格相等,所以,进一步,Eyx=-Px/PX+PY=-1/2(3)如果PX=2PY,.则根据上面(1),(2)的结果,可得肉肠的需求的价格弹性为:32YXXXdXPPPXPYXE面包卷对肉肠的需求的交叉弹性为:32YXXXYXPPPYPYXE8、假定某消费者的效用函数为MqU35.0,其中,q为某商品的消费量,M为收入。求:(1)该消费者的需求函数;(2)该消费者的反需求函数;(3)当121p,q=4时的消费者剩余。解:(1)由题意可得,商品的边际效用为:3:215.0MUqQUMU货币的边际效用为于是,根据消费者均衡条件MU/P=,有:pq3215.0整理得需求函数为q=1/36p2(2)由需求函数q=1/36p2,可得反需求函数为:5.061qp(3)由反需求函数5.061qp,可得消费者剩余为:313141216131405.040qqdqCS以p=1/12,q=4代入上式,则有消费者剩余:Cs=1/39设某消费者的效用函数为柯布-道格拉斯类型的,即yxU,商品x和商品y的价格格分别为px和yp,消费者的收入为M,1,且为常数和(1)求该消费者关于商品x和品y的需求函数。(2)证明当商品x和y的价格以及消费者的收入同时变动一个比例时,消费者对两种商品的需求关系维持不变。(3)证明消费者效用函数中的参数和分别为商品x和商品y的消费支出占消费者收入的份额。解答:(1)由消费者的效用函数yxU,算得:11yxyUMUyxQUMUyx消费者的预算约束方程为Mppyx(1)根据消费者效用最大化的均衡条件MypxpppMUMUyxyxYX(2)得Mypxpppyxyxyxyx11(3)解方程组(3),可得xpMx/(4)ypMy/(5)式(4)即为消费者关于商品x和商品y的需求函数。上述休需求函数的图形如图(2)商品x和商品y的价格以及消费者的收入同时变动一个比例,相当于消费者的预算线变为Mypxpyx(6)其中为一个非零常数。此时消费者效用最大化的均衡条件变为Mypxpppyxyxyxyx11(7)由于0,故方程组(7)化为Mypxpppyxyxyxyx11(8)显然,方程组(8)就是方程组(3),故其解就是式(4)和式(5)。这表明,消费者在这种情况下对两商品的需求关系维持不变。(3)由消费者的需求函数(4)和(5),可得Mxpx/(9)Mypy/(10)关系(9)的右边正是商品x的消费支出占消费者收入的份额。关系(10)的右边正是商品y的消费支出占消费者收入的份额。故结论被证实。3.已知生产函数Q=f(L,K)=2KL-0.5L2-0.5K2假定厂商目前属于短期生产,且K=10(1)写出在短期生产中该厂商关于劳动的总产量TPL函数,劳动的平均产量APL函数和劳动的边际产量函数MPL(2)分别计算当劳动的总产量TPL,劳动的平均产量APL和劳动的边际产量MPL各自达到极大值时厂商的劳动投入量(3)什么时候APL=MPL?它的值又是多少解答:(1)由生产数Q=2KL-0.5L2-0.5K2,且K=10,可得短期生产函数为:Q=20L-0.5L2-0.5*102=20L-0.5L2-50于是,根据总产量、平均产量和边际产量的定义,有以下函数:劳动的总产量函数TPL=20L-0.5L2-50劳动的平均产量函数APL=20-0.5L-50/L劳动的边际产量函数MPL=20-L(2)关于总产量的最大值:20-L=0解得L=20所以,劳动投入量为20时,总产量达到极大值。关于平均产量的最大值:-0.5+50L-2=0L=10(负值舍去)所以,劳动投入量为10时,平均产量达到极大值。关于边际产量的最大值:由劳动的边际产量函数MPL=20-L可知,边际产量曲线是一条斜率为负的直线。考虑到劳动投入量总是非负的,所以,L=0时,劳动的边际产量达到极大值。(3)当劳动的平均产量达到最大值时,一定有APL=MPL。由(2)可知,当劳动为10时,劳动的平均产量APL达最大值,及相应的最大值为:APL的最大值=10MPL=20-10=10很显然APL=MPL=106.已知生产函数Q=AL1/3K1/3判断:(1)在长期生产过程中,该生产函数的规律报酬属于哪一种类型(2)在短期生产过程中,该生产函数是否受边际报酬递减规律的支配(1).Q=AL1/3K1/3F(λl,λk)=A(λl)1/3(λK)1/3=λAL1/3K1/3=λf(L,K)所以,此生产函数属于规模报酬不变的生产函数。(2)假定在短期生产中,资本投入量不变,以k表示;而劳动投入量可变,以L表示。对于生产函数Q=AL1/3K1/3,有:MPL=1/3AL-2/3K1/3,且dMPL/dL=-2/9AL-5/3k-2/30这表明:在短期资本投入量不变的前提下,随着一种可变要素劳动投入量的增加,劳动的边际产量是递减的。相类似的,在短期劳动投入量不变的前提下,随着一种可变要素资本投入量的增加,资本的边际产量是递减的。4已知某企业的短期总成本函数是STC(Q)=0.04Q3-0.8Q2+10Q+5,求最小的平均可变成本值.解:TVC(Q)=0.04Q3-0.8Q2+10QAVC(Q)=0.04Q2-0.8Q+10令08.008.0QCAV得Q=10又因为008.0CAV所以当Q=10时,6MINAVC5.假定某厂商的边际成本函数MC=3Q2-30Q+100,且生产10单位产量时的总成本为1000.求:(1)固定成本的值.(2)总成本函数,总可变成本函数,以及平均成本函数,平均可变成本函数.解:MC=3Q2-30Q+100所以TC(Q)=Q3-15Q2+100Q+M当Q=10时,TC=1000=500(1)固定成本值:500(2)TC(Q)=Q3-15Q2+100Q+500TVC(Q)=Q3-15Q2+100QAC(Q)=Q2-15Q+100+500/QAVC(Q)=Q2-15Q+1006.某公司用两个工厂生产一种产品,其总成本函数为C=2Q12+Q22-Q1Q2,其中Q1表示第一个工厂生产的产量,Q2表示第二个工厂生产的产量.求:当公司生产的总产量为40时能够使得公司生产成本最小的两工厂的产量组合.解:构造F(Q)=2Q12+Q22-Q1Q2+λ(Q1+Q2-40)令3525150400204Q2121122211QQQQFQQQFQQF使成本最小的产量组合为Q1=15,Q2=254、已知某垄断厂商的成本函数为TC=0.6Q2+3Q+2,反需求函数为P=8-0.4Q.求:(1)该厂商实现利润最大化时的产量、价格、收益和利润.(2)该厂商实现收益最大化的产量、价格、收益和利润.(3)比较(1)和(2)的结果.解答:(1)由题意可得:MC=32.1QdQdTC且MR=8-0.8Q于是,根据利润最大化原则MR=MC有:8-0.8Q=1.2Q+3解得Q=2.5以Q=2.5代入反需求函数P=8-0.4Q,得:P=8-0.4×2.5=7以Q=2.5和P=7代入利润等式,有:л=TR-TC=PQ-TC=(7×0.25)-(0.6×2.52+2)=17.5-13.25=4.25所以,当该垄断厂商实现利润最大化时,其产量Q=2.5,价格P=7,收益TR=17.5,利润л=4.25(2)由已知条件可得总收益函数为:TR=P(Q)Q=(8-0.4Q)Q=8Q-0.4Q2令08.08:,0QdQdTRdQdTR即有解得Q=10且8.0dQdTR<0所以,当Q=10时,TR值达最大值.以Q=10代入反需求函数P=8-0.4Q,得:P=8-0.4×10=4以Q=10,P=4代入利润等式,有》л=TR-TC=PQ-TC=(4×10)-(0.6×102+3×10+2)=40-92=-52所以,当该垄断厂商实现收益最大化时,其产量Q=10,价格P=4,收益TR=40,利润л=-52,即该厂商的亏损量为52.(3)通过比较(1)和(2)可知:将该垄断厂商实现最大化的结果与实现收益最大化的结果相比较,该厂商实现利润最大化时的产量较低(因为2.2510),价格较高(因为74),收益较少(因为17.540),利润较大(因为4.25-52).显然,理性的垄断厂商总是以利润最大化作为生产目标,而不是将收益最大化作为生产目标.追求利润最大化的垄断厂商总是以较高的垄断价格和较低的产量,来获得最大的利润.5.已知某垄断厂商的反需求函数为P=100-2Q+2A,成本函数为TC=3Q2+20Q+A,其中,A表示厂商的广告支出.求:该厂商实现利润最大化时Q、P和A的值.解答:由题意可得以下的利润等式:л=P.Q-TC=(100-2Q+2A)Q-(3Q2+20Q+A)=100Q-2Q2+2AQ-3Q2-20Q-A=80Q-5Q2+2A将以上利润函数л(Q,A)分别对Q、A求偏倒数,构成利润最大化的一阶条件如下:QdQ10802A=00121QAA求以上方程组的解:由(2)得A=Q,代入(1)得:80-10Q+20Q=0Q=10A=100在此略去对利润在最大化的二阶条件的讨论.以Q=10,A=100代入反需求函数,得:P=100-2Q+2A=100-2×10+2×10=100所以,该垄断厂商实现利润最大化的时的产量Q=10,价格P=100,广告支出为A=100.6.已知某垄断厂商利用一个工厂生产一种产品,其产品在两个分割的市场上出售,他的成本函数为TC=Q2+40Q,两个市场的需求函数分别为Q1=12-0.1P1,Q2=20-0.4P2.求:(1)当该厂商实行三级价格歧视时,他追求利润最大化前提下的两市场各自的销售量、价格以及厂商的总利润.(2)当该厂商在两个市场实行统一的价格时,他追求利润最大化前提下的销售量、价格以及厂商的总利润.(3)比较(1)和(2)的结果.解答:(1)由第一个市场的需求函数Q1=12-0.1P1可知,该市场的反需求函数为P1=120-10Q1,边际收益函数为MR1=1
本文标题:《西方经济学》高鸿业4版课后习题答案
链接地址:https://www.777doc.com/doc-2818047 .html