您好,欢迎访问三七文档
5.1数列的概念与简单表示一、选择题1.已知数列{an}的通项an=nanb+c(a,b,c都是正实数),则an与an+1的大小关系是()A.an>an+1B.an<an+1C.an=an+1D.不能确定解析:an=nanb+c=ab+cn,∵y=cn是减函数,∴y=ab+cn是增函数,∴an<an+1.答案:B2.已知数列{an}中,a1=12,an+1=1-1an,则a16=()A.2B.3C.-1D.12解析:由题可知a2=1-1a1=-1,a3=1-1a2=2,a4=1-1a3=12,a5=1-1a4=-1,…,则此数列为周期数列,周期为3,故a16=a1=12.答案:D3.数列{-2n2+29n+3}中最大项是()A.107B.108C.10813D.109解析:an=-2n2+29n+3=-2(n-294)2+10818,∵294=714,且n∈N*,∴当n=7时,an最大,最大值为a7=108.答案:B4.已知数列{an}的前n项和Sn满足:Sn+Sm=Sn+m,且a1=1.那么a10=()A.1B.9C.10D.55解析:由Sn+Sm=Sn+m,得S1+S9=S10⇒a10=S10-S9=S1=a1=1.答案:A5.一函数y=f(x)的图象在给定的下列图象中,并且对任意an∈(0,1),由关系式an+1=f(an)得到的数列{an}满足an+1>an(n∈N*),则该函数的图象是()解析:由an+1>an可知数列{an}为递增数列,又由an+1=f(an)>an可知,当x∈(0,1)时,y=f(x)的图象在直线y=x的上方,故选A.答案:A6.数列{an}的前n项和为Sn,若a1=1,an+1=3Sn(n≥1),则a6=()A.3×44B.3×44+1C.43D.43+1解析:由an+1=3Sn⇒Sn+1-Sn=3Sn,即Sn+1=4Sn,又S1=a1=1,可知Sn=4n-1.于是a6=S6-S5=45-44=3×44.答案:A二、填空题7.设数列{an}中,a1=2,an+1=an+n+1,则其通项公式an=__________.解析:由an+1-an=n+1,可得当n≥2时,a2-a1=2,a3-a2=3,…,an-an-1=n.以上n-1个式子左右两边分别相加,得an-a1=2+3+…+n=n+2n-12,∴an=nn+12+1.又n=1时,a1=2适合上式,∴an=nn+12+1.答案:nn+12+18.设数列{an}的前n项和为Sn,Sn=a13n-12(对于所有n≥1),且a4=54,则a1的值是__________.解析:∵Sn=a13n-12,∴an=Sn-Sn-1=a12(3n-13·3n)=13a1·3n=a1·3n-1(n≥2).∵a4=54,∴54=a1·33.∴a1=2.答案:29.数列{an}中,a1=1,a2=5,an+2=an+1-an(n∈N*),则a2011=__________.解析:a3=a2-a1=4,a4=a3-a2=4-5=-1,a5=a4-a3=-1-4=-5,a6=a5-a4=-5-(-1)=-4,a7=a6-a5=-4-(-5)=1,a8=a7-a6=1-(-4)=5.∴数列{an}为周期数列,6为其一个周期.∴a2011=a1=1.答案:1三、解答题10.已知数列{an}中,a1=2,an+1=an+ln1+1n,求an.解析:由已知,an+1-an=lnn+1n,a1=2,∴an-an-1=lnnn-1,an-1-an-2=lnn-1n-2,…a2-a1=ln21.将以上n-1个式子累加,得an-a1=lnnn-1+lnn-1n-2+…+ln21=lnnn-1·n-1n-2·…·21=lnn∴an=2+lnn.11.数列{an}的前n项和为Sn,且a1=1,an+1=13Sn,n=1,2,3,….求:(1)a2,a3,a4的值;(2)数列{an}的通项公式.解析:(1)由a1=1,an+1=13Sn,n=1,2,3,…,得a2=13S1=13a1=13,a3=13S2=13(a1+a2)=49,a4=13S3=13(a1+a2+a3)=1627.(2)当n≥2时,an+1-an=13(Sn-Sn-1)=13an,∴an+1=43an(n≥2).又a2=13,∴an=13×(43)n-2(n≥2).∴数列{an}的通项公式为an=1,n=1,13×43n-2,n≥2.12.已知函数f(x)=2x-2-x,数列{an}满足f(log2an)=-2n.(1)求数列{an}的通项公式;(2)求证:数列{an}是递减数列.解析:(1)∵f(x)=2x-2-x,∴f(log2an)=2log2an-2-log2an=-2n,即an-1an=-2n.∴a2n+2n·an-1=0.∴an=-2n±4n2+42,又∵an>0,∴an=n2+1-n.(2)证明:∵an>0,且an=n2+1-n,∴an+1an=n+12+1-n+1n2+1-n=n2+1+nn+12+1+n+1<1.∴an+1<an.即{an}为递减数列.
本文标题:【冲刺高考】2015高考数学(理)一轮复习课后练习5.1数列的概念与简单表示[来源学优高考网9830
链接地址:https://www.777doc.com/doc-2820937 .html