您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 【考点训练】第19章四边形19.2特殊的平行四边形菱形的判定与性质-1
中学生习题网【考点训练】菱形的判定与性质-1一、选择题(共5小题)1.(2013•滨州)如图,等边△ABC沿射线BC向右平移到△DCE的位置,连接AD、BD,则下列结论:①AD=BC;②BD、AC互相平分;③四边形ACED是菱形.其中正确的个数是()A.0B.1C.2D.32.(1999•福州)下列语句中,正确的个数是()(1)等腰三角形的对称轴是底边的垂直平分线;(2)菱形的对角线相等且互相平分;(3)相等的角是对顶角;(4)顺次连接矩形各边中点所得的四边形是菱形.A.1个B.2个C.3个D.4个3.(2011•莱芜)如图,E、F、G、H分别是BD、BC、AC、AD的中点,且AB=CD.下列结论:①EG⊥FH,②四边形EFGH是矩形,③HF平分∠EHG,④EG=(BC﹣AD),⑤四边形EFGH是菱形.其中正确的个数是()A.1B.2C.3D.44.(2006•海南)如图,在菱形ABCD中,E,F,F,H分别是菱形四边的中点,连接EG与FH交于点O,则图中共有菱形()A.4个B.5个C.6个D.7个5.(2002•杭州)如图所示,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD等于()中学生习题网A.4B.3C.2D.1二、解答题(共1小题)(选答题,不自动判卷)6.如图,四边形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于E.(1)求证:四边形AECD是菱形;(2)若点E是AB的中点,试判断△ABC的形状,并说明理由.中学生习题网【考点训练】菱形的判定与性质-1参考答案与试题解析一、选择题(共5小题)1.(2013•滨州)如图,等边△ABC沿射线BC向右平移到△DCE的位置,连接AD、BD,则下列结论:①AD=BC;②BD、AC互相平分;③四边形ACED是菱形.其中正确的个数是()A.0B.1C.2D.3考点:平移的性质;等边三角形的性质;菱形的判定与性质.1528156分析:先求出∠ACD=60°,继而可判断△ACD是等边三角形,从而可判断①是正确的;根据①的结论,可判断四边形ABCD是平行四边形,从而可判断②是正确的;根据①的结论,可判断④正确.解答:解:△ABC、△DCE是等边三角形,∴∠ACB=∠DCE=60°,AC=CD,∴∠ACD=180°﹣∠ACB﹣∠DCE=60°,∴△ACD是等边三角形,∴AD=AC=BC,故①正确;由①可得AD=BC,∵AB=CD,∴四边形ABCD是平行四边形,∴BD、AC互相平分,故②正确;由①可得AD=AC=CE=DE,故四边形ACED是菱形,即③正确.综上可得①②③正确,共3个.故选D.点评:本题考查了平移的性质、等边三角形的性质、平行四边形的判定与性质及菱形的判定,解答本题的关键是先判断出△ACD是等边三角形,难度一般.2.(1999•福州)下列语句中,正确的个数是()(1)等腰三角形的对称轴是底边的垂直平分线;(2)菱形的对角线相等且互相平分;(3)相等的角是对顶角;(4)顺次连接矩形各边中点所得的四边形是菱形.A.1个B.2个C.3个D.4个考点:菱形的判定与性质;相交线;等腰三角形的性质.1528156专题:开放型.分析:根据等腰三角形、菱形等相关知识进行解答.解答:解:(1)等腰三角形的对称轴是顶角平分线所在的直线,根据等腰三角形三线合一的性质,知:此直线也垂直平分底边,故(1)正确;(2)菱形的对角线互相垂直平分,但不相等,故(2)错误;(3)对顶角相等,但相等的角不是对顶角,故(3)错误;(4)矩形的对角线相等,根据三角形中位线定理,可证得顺次连接矩形各中点所得四边形的四边都相等,中学生习题网由此可判定所得四边形是菱形,故(4)正确;所以正确的结论是(1)(4),故选B.点评:此题主要考查的是等腰三角形的性质、菱形的判定和性质,熟练掌握各图形的性质是解答此类题目的关键.3.(2011•莱芜)如图,E、F、G、H分别是BD、BC、AC、AD的中点,且AB=CD.下列结论:①EG⊥FH,②四边形EFGH是矩形,③HF平分∠EHG,④EG=(BC﹣AD),⑤四边形EFGH是菱形.其中正确的个数是()A.1B.2C.3D.4考点:三角形中位线定理;菱形的判定与性质.1528156专题:推理填空题.分析:根据三角形的中位线平行于第三边并且等于第三边的一半与AB=CD可得四边形EFGH是菱形,然后根据菱形的对角线互相垂直平分,并且平分每一组对角的性质对各小题进行判断.解答:解:∵E、F、G、H分别是BD、BC、AC、AD的中点,∴EF=CD,FG=AB,GH=CD,HE=AB,∵AB=CD,∴EF=FG=GH=HE,∴四边形EFGH是菱形,∴①EG⊥FH,正确;②四边形EFGH是矩形,错误;③HF平分∠EHG,正确;④当AD∥BC,如图所示:E,G分别为BD,AC中点,∴连接CD,延长EG到CD上一点N,∴EN=BC,GN=AD,∴EG=(BC﹣AD),只有AD∥BC时才可以成立,而本题AD与BC很显然不平行,故本小题错误;⑤四边形EFGH是菱形,正确.综上所述,①③⑤共3个正确.故选C.点评:本题考查了三角形中位线定理与菱形的判定与菱形的性质,根据三角形的中位线定理与AB=CD判定四边形EFGH是菱形是解答本题的关键.4.(2006•海南)如图,在菱形ABCD中,E,F,F,H分别是菱形四边的中点,连接EG与FH交于点O,则图中共有菱形()中学生习题网A.4个B.5个C.6个D.7个考点:菱形的判定与性质;三角形中位线定理.1528156分析:由菱形的性质和判定,图中的菱形由:四边形AEOH,HOGD,EOFB,OFGC和ABCD,共5个.解答:解:∵四边形ABCD是菱形,E,F,F,H分别是菱形四边的中点,∴AE=AH=HD=GD=CG=CF=FB=BE=OE=OG=OH=OF,∴四边形AEOH,HOGD,EOFB,OFGC和ABCD均为菱形,共5个.故选B.点评:本题考查了菱形的判定:四边相等的四边形是菱形.5.(2002•杭州)如图所示,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD等于()A.4B.3C.2D.1考点:菱形的判定与性质;含30度角的直角三角形.1528156专题:压轴题.分析:过点P做PM∥CO交AO于M,可得∠CPO=∠POD,再结合题目推出四边形COMP为菱形,即可得PM=4,又由CO∥PM可得∠PMD=30°,由直角三角形性质即可得PD.解答:解:如图:过点P做PM∥CO交AO于M,PM∥CO∴∠CPO=∠POD,∠AOP=∠BOP=15°,PC∥OA∴四边形COMP为菱形,PM=4PM∥CO⇒∠PMD=∠AOP+∠BOP=30°,又∵PD⊥OA∴PD=PC=2.令解:作CN⊥OA.∴CN=OC=2,又∵∠CNO=∠PDO,∴CN∥PD,∵PC∥OD,∴四边形CNDP是长方形,∴PD=CN=2故选C.中学生习题网点评:本题运用了平行线和直角三角形的性质,并且需通过辅助线求解,难度中等偏上.二、解答题(共1小题)(选答题,不自动判卷)6.如图,四边形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于E.(1)求证:四边形AECD是菱形;(2)若点E是AB的中点,试判断△ABC的形状,并说明理由.考点:菱形的判定与性质.1528156专题:数形结合.分析:(1)利用两组对边平行可得该四边形是平行四边形,进而证明一组邻边相等可得该四边形为菱形;(2)利用菱形的邻边相等的性质及等腰三角形的性质可得两组角相等,进而证明∠ACB为直角即可.解答:解:(1)∵AB∥CD,CE∥AD,∴四边形AECD为平行四边形,∠2=∠3,又∵AC平分∠BAD,∴∠1=∠2,∴∠1=∠3,∴AD=DC,∴AECD是菱形;(2)直角三角形.理由:∵AE=EC∴∠2=∠4,∵AE=EB,∴EB=EC,∴∠5=∠B,又因为三角形内角和为180°,∴∠2+∠4+∠5+∠B=180°,∴∠ACB=90°,∴△ACB为直角三角形.点评:考查菱形的判定与性质的应用;用到的知识点为:一组邻边相等的平行四边形是菱形;菱形的4条边都相等.中学生习题网关注中学生习题网官方微信公众号,免费学习资源、学习方法、学习资讯第一时间掌握。微信公众账号:xitibaike扫描二维码关注:
本文标题:【考点训练】第19章四边形19.2特殊的平行四边形菱形的判定与性质-1
链接地址:https://www.777doc.com/doc-2822826 .html