您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 一元一次方程及其解法,市级公开课教案,教案
滁州市区初中数学“同步教学观、评、研”系列教学教研活动公开课教案课题:一元一次方程及其解法(第一课时)滁州六中高在为13.1一元一次方程及其解法(第一课时)教材分析本节主要了解一元一次方程的概念及如何解一元一次方程。本节通过对一元一次方程的学习,可以对已经学过的有理数的运算、代数式等知识加以巩固,同时又是今后学习二元一次方程组、三元一次方程组、一元二次方程、一元一次不等式(组)、一次函数等知识的基础,也是解决实际问题的一种重要数学模型。学情分析从学生所具备的基本技能来看,在小学阶段已学过了用算术方法解决应用题,还学习了等式的基本性质,并利用该性质解一些简易方程,学生已经对方程有了初步的认识,积累了一些用方程表示简单情境中的数量关系的经验,但是对于方程的认识还比较肤浅、模糊,还处于感性层面缺乏理性的认识和把握。教学目标1、通过对两个实际问题的分析而列出方程,感受用方程来解决实际问题的优越性。2、归纳并理解一元一次方程、方程的解及解方程的概念。3、理解等式的基本性质,会根据等式的基本性质解一元一次方程。4、使学生经历把实际问题抽象为数学方程的过程,感受方程作为刻画现实世界有效模型的意义,初步体会建立数学模型的思想。重点一元一次方程的定义,利用等式的基本性质解简单的一元一次方程。难点1、对一元一次方程的概念、特征的正确理解。2、利用等式的基本性质对方程进行适当的变形。教学方法根据教学目标、重难点及学情分析,本课时主要采用讲授与合作探究学习相结合的教学方法。教学准备1、教师准备:PPT课件2、学生准备:复习小学学过的等式的基本性质及简单方程的解法。教学流程本节课教学流程共分为五个环节,依次是:环节一呈现情境,感受价值环节二探究新知,认识概念环节三回顾性质,知识应用环节四快乐之旅,巩固提升环节五课堂小结,布置作业教学过程2教学环节教学内容师生行为设计意图环节一呈现情境,感受价值1、投影出示问题1同学们,我们前面学习了第一章《有理数》和第二章《整式加减》,我统计了一下,学习第一章共用去了40天时间,比学习第二章的时间的两倍还要多10天,你知道学习第二章用了多少时间吗?解法一(算术方法):(40-10)÷2=15(天)解法二(列方程法)设学习第二章用了x天,根据题意,得21040x解方程,得15x预设:学生可能首先会想到用算术方法来解决问题,在此基础上教师追问还有其他方法吗?引导学生利用列方程的方法来解决,并请学生用小学所学知识来说出所列方程的解(此环节主要目的是抽象出方程模型,为一元一次方程的定义做铺垫,因此这里教师不必深究学生是如何得到方程的解的,只要能得到结果并且大家都认可即可,在环节三将重点研究解法),比较两种方法结果的一致性。通过问题1让学生感受解决实际问题方法的多样性,并在利用列方程的方法解决问题的过程中,回顾小学所学的简单的方程的解法。通过问题2让学生发现算术方法具有一定的局限性,体会利用方程来刻画生活中数量关系的优越性和必要性。2、投影出示问题2王玲同学今年12岁,她爸爸今年36岁,问再过几年,她爸爸的年龄是她年龄的2倍?解:设再过x年,王玲的年龄是(12)x岁,她爸爸的年龄为(36)x岁,根据题意,得362(12)xx预设:学生在解决此问题时可能无法使用算术方法,自然想到通过设未知数列方程的方法来解决,而在解方程时学生可能遇到困难正好为后面的学习留下悬念,激发了学生的学习激情。环节二探究新知,认识概念1、观察:上面得到的两个方程有什么共同特点?2、总结只含有一个未知数(元),未知数的次数都是1,且等式两边都是整式的方程叫做一元一次方程。预设:学生可能不会从“元”和“次”这两方面进行总结,这时,教师可把方程的分类问题做适当点拨(引导学生从未知数的个数与未知数的次数两个方面来观察)通过观察、点拨、总结,同学生一起得到一元一次方程的概念,锻炼学生的观察能力和语言表达能,然后通过一组判断题加深对概念的理解。在这个过程中通过独立思考、合作交流,培养学生的合作意识,发挥优秀学生3教学环节教学内容师生行为设计意图环节二探究新知,认识概念3、辨析:判断下列各式是不是一元一次方程。21(1)27(2)438(3)59(4)61223918xyyyamx、、教师通过学生的思考辨析,提炼概念中的关键词。的帮带作用,让每一个学生都能得到不同程度的发展。其次,在辨析环节,教师设置了一组各有代表性的判断题,目的是帮助学生加深对一元一次方程的概念的理解。4、使方程两边相等的未知数的值,叫做方程的解。一元方程的解,也可叫做方程的根。5、方程是等式(含有未知数的等式),解方程就是根据等式的性质求方程的解的过程。想一想:对于方程2x+5=9来说,x=3能使它成立吗?x=2呢?环节三回顾性质,知识应用1、刚才有同学解方程21040x得到15x,你能说说你是怎么得到的吗?每一步的依据是什么?2、投影出示等式的基本性质,并用字母分别表示出来,补充等式的对称性和传递性。3、例1解方程215x预设:学生在小学阶段已学过等式的基本性质,但可能遗忘一时回忆不完整,这时教师可通过课件用天平动画演示,帮助学生恢复对知识的记忆。教师板书解题过程并检验。由解方程21040x的过程回顾小学所学的等式的基本性质,并在此基础上补充等式的对称性和传递性。然后通过例题讲解,让学生明确该性质是解一元一次方程的主要依据,利用等式的基本性质可以对一元一次方程进行变形,并引导学生明晰每一步变化的依据,从而培养学生思维的逻辑性,加深对解方程理论依据(等式的性质)的认识。环节四快乐之旅,巩固提升砸金蛋游戏:4个金蛋你可以任选一个,如果出现“恭喜你”的字样,你将直接过关;否则将有考验你的数学问题,当然你可以自己作答,也可以求助你的同学。金蛋A:请根据等式的性质解下列方程,并检验:(1)3621(2)1752xx你可以请一位同学和你一起来完成这两道题目。教师出示PPT课件.每一堂课都是一次知识的积累,每一次举手都是一次勇气的锻炼,让我们用勇气做翅膀,在知识的天空自由翱翔。教师出示PPT课件,让学生自主选择金蛋。以砸金蛋的游戏来巩固本节课所学知识,活跃课堂气氛,激发学生学习热情。通过金蛋A的练习让学生再次体验方程的解,及根据等式的性质解方程的过程,并通过同学间合作,培养学生的合作意识。4教学环节教学内容师生行为设计意图环节四快乐之旅,巩固提升金蛋B:我们的骄傲中国古代数学家在方程发展过程中所做的贡献:在我国,“方程”一词最早出现于《九章算术》。《九章算术》全书共分九章,第八章就叫“方程”。12世纪前后,我国数学家用“天元术”来解题,即先要“立天元为某某”,相当于“设为某某”。14世纪初,我国元朝数学家朱世杰创立了“四元术”,四元指天、地、人、物,相当于四个未知数。金蛋C:用适当的数或整式填空,使得结果仍是等式,并说明依据是什么。金蛋D:恭喜你,过关了。由选择金蛋的同学来完成练习,有困难时可请其他同学帮助。通过介绍,使学生对中国古代数学家在方程的发展方面所作贡献增加了解。通过金蛋C的练习使学生加深对等式的基本性质的理解和应用。环节五课堂小结,布置作业1、请同学们静思1分钟,回顾一下本节课主要学习了那些内容?你有那些收获?我们一起来分享一下吧。2、课后思考:(1)在问题2中,我们曾列出方程362(12)xx,这种复杂一些的一元一次方程该怎么解呢?(2)、一群老头去赶集,半路买了一堆梨。一人一个多一个,一人两个少俩梨。请问同学知道否,几个老头几个梨?先请同学回顾,然后教师通过PPT课件展示本节课的知识结构,学生将自我回顾与其融合,完善本节课知识体系。把学生反思与教师总结相结合,使学生对本节课知识有一个完整系统的认识。通过教师设疑,设计趣味应用题增加数学课的趣味性,可以使学生开阔思维,充分发挥想象力和创造力,同时为下一节课做铺垫。(1)2,____(2)9,____12,___(4)1582,82___xxxxmnmnxx如果6+那么如果-3那么(3)如果那么如果那么5板书设计3.1一元一次方程及其解法1、一元一次方程一元一次等式整式2、方程的解3、解方程4、等式的基本性质:例1、解方程215x解:两边都减去1,得24x(等式基本性质1)两边都除以2,得2x(等式基本性质2)检验:把2x分别代入原方程的两边,得左边2215右边5即左边=右边所以2x是原方程的解教学后记:
本文标题:一元一次方程及其解法,市级公开课教案,教案
链接地址:https://www.777doc.com/doc-2823919 .html