您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 管理学资料 > 一次函数习题精选(2011年中考复习用,经本人收集整理含答案)
第1页共8页一次函数1、一家小型放影厅盈利额y(元)同售票数x之间的关系如图2所示,其中保险部门规定:超过150人时,要缴纳公安消防保险费50元.试根据关系图回答下列问题:图2(1)当售票数x满足0<x≤150时,盈利额y(元)与x之间的函数关系式是________.(2)当售票数x满足150<x≤250时,盈利额y(元)与x之间的函数关系式是________.(3)当售票数x为__________时,不赔不赚;当售票数x满足__________时,放影厅要赔本;若放影厅要获得最大利润200元,此时售票数x应为________.(4)当x满足________时,此时利润比x=150时多.2、一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图3.结合图象回答:(1)农民自带的零钱有多少元?图3(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.8元将剩余土豆售完,这时他手中的钱(含备用零钱)是62元,问他一共带了多少千克土豆?3、小明买了一套现价为12万元的房子,购房时已付房款3万元,从第二年起,以后每年付房款5000元与上一年剩余欠款利息的和,已知剩余欠款的年利率为0.4%.(1)将第三年、第四年、第十年应付房款填入下列表格中:年份第一年第二年第三年第四年…第十年…应交房款(元)300005360……(2)若第x年(x≥2),小明家应交房款y元,请写出年付房款y与x的函数关系式.答:________________________________解:(1)第三、四、十年分别应交房款5340元、5320元、5200元(2)y=5000+[90000-5000(x-2)]×0.4%=5400-20x(x≥2)4、已知直线L1经过点A(-1,0)与点B(2,3),另一条直线L2经过点B,且与x轴相交于点P(m,0).(1)求直线L1的解析式;(2)若△APB的面积为3,求m的值.解:(1)设直线L的解析式为y=kx+b,由题意得0,23.kbkb解得1,1.kb所以,直线L1的解析式为y=x+1.(2)当点P在点A的右侧时,AP=m-(-1)=m+1,有S△APC=12×(m+1)×3=3.解得m=1,此时点P的坐标为(1,0);当点P在点A的左侧时,AP=-1-m,有S=×(-m-1)×3=3,解得m=-3,此时,点P的坐标为(-3,0).综上所述,m的值为1或-3.5、如图所示,一次函数y=x+5的图像经过点P(a,b),Q(c,d),则a(c-d)-b(c-d)的值为______.6、某校部分住校学生,放学后到学校锅炉房打水,每人接水2L,他们先同时打开两个放水龙头,后来故故障关闭一个放水龙头,假设前后两个接水间隔时间忽略不计,且不发生泼洒,锅炉内的余水量y(L)与接第2页共8页水时间x(min)的函数图像如图所示.请结合图像,回答下列问题:(1)根据图中信息,请你写出一个结论;(2)问前15位同学接水结束共需要几分钟?(3)小敏说:“今天我们寝室的8位同学去锅炉房连续接完水恰好用了3min”.你说可能吗?请说明理由.解:(1)锅炉内原有水96L,接水2min后锅炉内的余水量为80L,等.(2)当0≤x≤2时,y=-8x+96当x2时,y=-4x+88∵前15位同学接完水时余水量为(96-15×2L)=66L∴66=-4x+88x=5.5min(3)小敏说法是可能的,即从第1min开始8位同学连接接完水恰好用了3min.7、甲,乙两名同学进行登山比赛,图5-42所示为甲同学和乙同学沿相同的路线同时从山脚出发到达山顶过程中,各自行进的路程随时间变化的图象,根据图像中的有关数据回答下列问题:(1)分别求出表示甲,乙两同学登山过程中路程s(km)与时间t(h)的函数解析式;(不要求写出自变量t的取值范围)(2)当甲到达山顶时,乙行进到山路上的某点A处,求A点距山顶的距离;(3)在(2)的条件下,设乙同学从A处继续登山,甲同学到达山顶后休息1h,沿原路下山,在点B处与乙相遇,此时点B与山顶距离为1.5km,相遇后甲,乙各自按原来的线路下山和上山,求乙到达山顶时,甲离山脚的距离是多少千米?解:(1)设甲,乙两同学登山过程中,路程s(km)与时间t(h)的函数解析式分别为s甲=k1t,s乙=k2t,由题意,得6=2k1,6=3k2.∴k1=3,k2=2∴解析式分别为s甲=3t,s乙=2t.(2)甲到在山顶时,由图像可知,当s甲=12(km),代入s甲=3t,得:t=4(h).∴s乙=2×4=8(km)∴12-8=4(km)答:当甲到达山顶时,乙距山顶的距离为4km.(3)由图像可知:甲到达山顶并休息1h后点D的坐标为(5,12)由题意,得:点B的纵坐标为12-32=212,代入s乙=2t,解得:t=214,∴点B(214,212)设过B,D两点直线解析式为s=kx+b.由题意,得212124125tbtb解得642kb∴直线BD的解析式为s=-6t+42∴当乙达到山顶时,s乙=12,得t=6,把t代入s=-6t+42得s=6(km)答:当乙达到山顶时,甲距山脚6km.8、一列快车从甲地驶往乙地,一列慢车从乙地第3页共8页驶往甲地,两车同时出发.设慢车行驶的时间为x(h),两车之间的距离为y(km),下图中的折线表示y与x之间的函数关系.根据图像进行以下探究:信息读取:(1)甲,乙两地之间的距离为_____km;(2)请解释图中点B的实际意义.图像理解:(3)求慢车和快车的速度;(4)求线段BC所表示的y与x之间的函数关系式,并写出自变量x的取值范围.问题解决:(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30min后,第二列快车与慢车相遇,求第二列快车比第一列快车晚出发多少小时.解:(1)900.(2)图中点B的实际意义是:当慢车行驶4h时,慢车和快车相遇.(3)由图像可知,慢车12h行驶的路程为900km,所以慢车的速度为90012km/h=75km/h;当慢车行驶4h时,慢车和快车相遇,两车行驶的路程之和为900km,所以慢车和快车行驶的速度之和为9004km/h=225km/h.所以快车的速度为150km/h.(4)根据题意,快车行驶900km到达乙地,所以快车行驶900150h=6h到达乙地.此时两车之间的距离为6×75km=450km,所以点C的坐标为(6,450).设线段BC所表示的y与x之间的函数关系式为y=kx+b,把(4,0),(6,450)代入得04,4506,kbkb解得225,900.kb所以,线段BC所表示的y与x之间的函数关系式为y=225x-900,自变量x的取值范围是4≤x≤6.(5)慢车与第一列快车相遇30min后与第二列快车相遇,此时,慢车的行驶时间是4.5h.把x=4.5代入y=225x-900.得y=112.5.此时慢车与第一列快车之间的距离等于两列快车之间的距离,是112.5km.所以两列快车出发的间隔时间是112.5÷150h=0.75h.即第二列快车比第一列快车晚出发0.75h.9、某企业有甲,乙两个长方体的蓄水池,将甲池中的水以6m3/h的速度注入乙池,甲,乙两个蓄水池中水的深度y(m)与注水时间x(h)之间的函数图像如图所示,结合图像回答下列问题:(1)分别求出甲,乙两个蓄水池中水的深度y与注水时间x之间的函数关系式;(2)求注水多长时间甲乙两个蓄水池水的深度相同;(3)求注水多长时间甲乙两个蓄水池的蓄水量相同.解:(1)设y甲=k1x+b1,把(0,2)和(3,第4页共8页0)代入,解得k1=-23,b1=2.∴y甲=-23x+2.设y乙=k2x+b2,把(0,1)和(3,4)代入.解得k2=1,b2=1,∴y乙=x+1.(2)根据题意,得2231xyxy解得x=35.所以注水35h甲,乙两个蓄水池中水的深度相同.(3)设甲蓄水池的底面积为S1,乙蓄水池的底面积为S2,th甲,乙两个蓄水池的蓄水量相同,依题意得2S1=3×6,S1=9(4-1)S2=3×6=,S2=6S1(-23t+2)=S2(t+1)解得t=1.∴注水1h甲,乙两个蓄水池的蓄水量相同.10、我县农业结构调整取得了巨大成功,今年水果又喜获丰收,某乡组织30辆汽车装运A、B、C三种水果共64吨到外地销售,规定每辆汽车只装运一种水果,且必须装满;又装运每种水果的汽车不少于4辆;同时,装运的B种水果的重量不超过装运的A、C两种水果重量之和.(1)设用x辆汽车装运A种水果,用y辆汽车装运B种水果,根据下表提供的信息,求y与x之间的函数关系式并写出自变量的取值范围.(2)设此次外销活动的利润为Q(万元),求Q与x之间的函数关系式,请你提出一个获得最大利润时的车辆分配方案.解:(1)由题得到:2.2x+2.1y+2(30-x-y)=64所以y=-2x+40又x≥4,y≥4,30-x-y≥4,得到14≤x≤18(2)Q=6x+8y+5(30-x-y)=-5x+170Q随着x的减小而增大,又14≤x≤18,所以当x=14时,Q取得最大值,即Q=-5x+170=100(百元)=1万元。因此,当x=14时,y=-2x+40=12,30-x-y=4所以,应这样安排:A种水果用14辆车,B种水果用12辆车,C种水果用4辆车。11、某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需要调往A县10辆,调往B县8辆,已知从甲座仓库调运1辆农用车到A县和B县运费分别为40元和80元,从乙仓库调运一辆农用车到A县和B县费用为30元和50元.设从乙仓库调往A县农用车x辆,(1)求总运费y关于x的函数关系.(2)要求总运费不超过900元,共有几种调运方案?选出总运费最低的调运方案,最低运费是多少元?解:(1)答案:y=20x+860.提示:从乙仓库调往A县农用车x辆,则乙仓库调往B县农用车(6-x)辆,甲仓库调往A县农用车(10-x)辆,甲仓库调往B县农用车12-(10-x)辆,即x+2辆,所需总运费y=30x+50(6-x)+40(10-x)+80(x+2)=20x+860.(2)答案:20x+860≤900,得0≤x≤2,有三种方案,当x=0时,有最低运费为860元.提示:这里y随x的增大而增大,即x越大,y越大,x越小,y越小,当x取最小值时,运费最低.水果品种ABC每辆汽车运装量(吨)2.22.12每吨水果获利(百元)685第5页共8页12、某乒乓球训练馆准备购买n副某种品牌的乒乓球拍,每副球拍配k(k≥3)个乒乓球。已知A、B两家超市都有这个品牌的乒乓球拍和乒乓球出售,且每副球拍的标价都为20元,每个乒乓球的标价都为1元。现两家超市正在促销,A超市所有商品均打九折(按原价的90%付费)销售,而B超市买1副乒乓球拍送3个乒乓球。若仅考虑购买球拍和乒乓球的费用,请解答下列问题:(1)如果只在某一家超市购买所需球拍和乒乓球,那么去A超市还是B超市买更合算?(2)当k=12时,请设计最省钱的购买方案.解:(1)由题意,去A超市购买n副球拍和kn个乒乓球的费用为0.9(20n+kn)元,去B超市购买n副球拍和kn个乒乓球的费用为[20n+n(k-3)]元,由0.9(20n+kn)20n+n(k-3),解得k10;由0.9(20n+kn)=20n+n(k-3),解得k=10;由0.9(20n+kn)20n+n(k-3),解得k10.∴当k10时,去A超市购买更合算;当k=10时,去A、B两家超市购买都一样;当3≤k10时,去B超市购买更合算.(2)当k=12时,购买n副球拍应配12n个乒乓球.若只在A超市购买,则费用为0.9(20n+12n)=28.8n(元);若只在B超市购买,则费用为20n+(12n-3n)=29n(元);设在B超市购买x副球拍
本文标题:一次函数习题精选(2011年中考复习用,经本人收集整理含答案)
链接地址:https://www.777doc.com/doc-2825639 .html