您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 冶金工业 > 《函数单调性》的教学案例
《函数单调性》教学案例1.【案例背景】“函数的单调性”是新课标人教版《数学·1》第一章第三节的教学内容。“课标”规定两个课时,所选案例为第一课时。函数的单调性是函数的一条基本性质,从知识结构上看,函数的单调性既是函数概念的延续和拓展,又是后续研究基本初等函数、三角函数等内容的基础。在这之前,学生已经学过函数的定义,函数的表示,学习过一次函数,二次函数,反比例函数等,函数单调性是学生研究函数整体性质的开始,之后还有奇偶性周期性等,所以本节内容承前启后,不仅要用到以前学过的函数知识,还要由这些知识出发获得函数自身的更深人的认识,并由这些认识解决有关的函数问题,这一节学好了,学生获得的知识就会对后面几节的知识产生正迁移作用。2.【教学内容分析】首先,从单调性知识本身来讲.学生对于函数单调性的学习共分为三个阶段,第一阶段是在初中学习了一次函数、二次函数、反比例函数图象的基础上对增减性有一个初步的感性认识;第二阶段是在高一进一步学习函数单调性的严格定义,从数和形两个方面理解单调性的概念;第三阶段则是在高三利用导数为工具研究函数的单调性.高一单调性的学习,既是初中学习的延续和深化,又为高三的学习奠定基础.其次,从函数角度来讲.函数的单调性是学生学习函数概念后学习的第一个函数性质,也是第一个用数学符号语言来刻画的概念.函数的单调性与函数的奇偶性、周期性一样,都是研究自变量变化时,函数值的变化规律;学生对于这些概念的认识,都经历了直观感受、文字描述和严格定义三个阶段,即都从图象观察,以函数解析式为依据,经历用符号语言刻画图形语言,用定量分析解释定性结果的过程.因此,函数单调性的学习为进一步学习函数的其它性质提供了方法依据.最后,从学科角度来讲.函数的单调性是学习不等式、极限、导数等其它数学知识的重要基础,是解决数学问题的常用工具,也是培养学生逻辑推理能力和渗透数形结合思想的重要素材.3.【学情分析】高一的学生正处于经验逻辑思维发展阶段,具备了一定的逻辑思维但要想使学生“以一系列的行动队一系列的条件作出反应”却需要很大的努力的。函数单调性的本质是利用定量的方法来研究函数图象的性质,如何将图形特征用严谨的数学语言来刻画是本节课的难点之一.另一难点是学生在高中阶段第一次接触代数证明,如何进行严格的推理论证并完成规范的书面表达.因此首先要重视学生的亲身体验:将新知识与学生的已有知识建立了联系.如:学生对一次函数、二次函数和反比例函数的认识。运用新知识尝试解决新问题.其次重视学生发现的过程.充分展现学生将函数图象(形)的特征转化为函数值(数)的特征的思维过程。充分展现在正、反两个方面探讨活动中,学生认知结构升华、发现的过程.最后重视学生的动手实践过程.通过对定义的解读、巩固,让学生动手去实践运用定义.4.【教学过程】一、创设情境,引入课题课前布置任务:(1)由于某种原因,2008年北京奥运会开幕式时间由原定的7月25日推迟到8月8日,请查阅资料说明做出这个决定的主要原因.(2)通过查阅历史资料研究北京奥运会开幕式当天气温变化情况.课上通过交流,可以了解到开幕式推迟主要是天气的原因,北京的天气到8月中旬,平均气温、平均降雨量和平均降雨天数等均开始下降,比较适宜大型国际体育赛事.下图是北京市今年8月8日一天24小时内气温随时间变化的曲线图.引导学生识图,捕捉信息,启发学生思考.问题1:请同学们观察图,指出该天的气温在如何变化?(学生独立思考)【设计意图】通过生活实例,让学生对图象的上升和下降有一个初步的感性认识,让学生感受到函数的单调性和我们的生活密切相关,进而激发学生的兴趣,引发学生进一步学习的好奇心。生1(主动回答):0~4时,温度下降,4~14时温度上升,14~24时温度下降。问题2:还能举出生活中其他的数据变化情况吗?预案:水位高低、燃油价格、股票价格等.归纳:用函数观点看,其实就是随着自变量的变化,函数值是变大还是变小.〖设计意图〗由生活情境引入新课,激发兴趣.二.借助图象,直观感知问题3:观画出y=x和2yx的函数图象,回答下面两个问题:⑴分别指出上面两个函数的图象在哪个区间是上升的,在哪个区间是下降的?【设计意图】顺应学生的认知规律。(小组合作探求)生1:一次函数y=x其定义域上是上升的,二次函数2yx是先下降后上升。师:这样回答准确吗?生2:一次函数y=x在区间(-∞,+∞)上是“上升”的;二次函数y=x2在区间(-∞,0)上是“下降”的,(0,-∞)上是“上升”的。⑵同学们能用数学语言把这两个函数图象“上升”或“下降”的特征描述出来吗?【设计意图】有感性上升到理性。(给学生适当的思考时间)这时学生们思维较为混乱,无从下手。教师及时通过几何画板展示y=x图象上A点的运动情况,让学生观察x,y值的变化。师(及时提问):同学们能用数学语言把y=x图象上升的特征描述出来吗?生3:该函数随着x的值增大,y的值相应的增大。师(面向全体学生):大家同意生4的回答吗?生4:老师,我有补充,应该说:该函数在区间(-∞,+∞)上随着x的值增大,y的值相应的增大。师:生5补充的很好,明确提出了函数变量在对应区间上的变化情况,那么函数2yx呢?生5:函数2yx在区间(-∞,0)上随着x的值增大,y的值相应的减小;在区间(0,+∞)上是随着x的值增大,y的值相应的增大。师:在数学上,我们把y随着x的增大而增大,称为增函数;把y随着x的增大而减小,称为减函数。三.探究规律,理性认识问题4:如何从解析式的角度说明2)(xxf在),0[为增函数?生6:因为12,(1)(2)ff,所以2)(xxf在),0[为增函数.生7:因为12345,(1)(2)(3)(4)(5)fffff所以2)(xxf在),0[为增函数.生8:不对,以上只在两个或有限个特殊值之间进行比较,不能代替所有值。师:很好,所有的都拿出来比较,能做到吗?一一列举行吗?(意图:通过这一问题,让学生联想到用字母符号来表示任意的数值)生:拿两个就行了。师:原来不都是每次拿两个来进行比较的吗?为什么不行?生(终于明白):任意两个。师:找任意两个?怎样能做到这一点。生:用字母表示数字。师:更清晰一点说呢?生:用12,xx表示两个变量,用12(),()fxfx表示对应的函数值。师:好,请大家回想一下上述过程,试用12,xx、12(),()fxfx来刻画增函数的定义。学生尝试用符号表达单调增函数的定义,师生共同修正:任取2121),,0[,xxxx且,因为0))((21212221xxxxxx,即2221xx,所以2)(xxf在),0[为增函数.对于学生错误的回答,引导学生分别用图形语言和文字语言进行辨析,使学生认识到问题的根源在于自变量不可能被穷举,从而引导学生在给定的区间内任意取两个自变量21,xx.〖设计意图〗把对单调性的认识由感性上升到理性认识的高度,完成对概念的第二次认识.事实上也给出了证明单调性的方法,为证明单调性做好铺垫.四.抽象思维,形成概念问题5:你能用准确的数学符号语言表述出增函数的定义吗?师生共同探究,得出增函数严格的定义,然后学生类比得出减函数的定义.板书定义:函数的单调性:设函数f(x)的定义域为I.如果对于属于定义域I内某个区间上的任意两个自变量的值x1,x2,当x1x2时:若总有f(x1)f(x2),则称函数y=f(x)在这个区间上是增函数;若总有f(x1)f(x2),则称函数y=f(x)在这个区间上是减函数。如果函数y=f(x)在某个区间上是增函数或减函数,则称函数y=f(x)在这一区间上具有严格的单调性,这一区间叫做函数y=f(x)的单调区间。师:你能否举出一个具体函数的例子,使它在区间(,)上对任意12xx,总有12()()fxfx生:()fxx师:你能否举出一些具体的例子,使它在区间(0)上,对任意的12xx,总有12()()fxfx生:1()fxx,2()fxx【设计意图】打通抽象与具体之间的联系。单调性是对定义域内某个区间而言的,离开了定义域和相应区间就谈不上单调性;对于某个具体函数的单调区间,可以是整个定义域(如一次函数),可以是定义域内某个区间(如二次函数),也可以根本不单调(如常函数),因此单调性是函数的局部性质。问题6:依据上述定义,试判断函数()1xfxx在(0,+∞)上是增函数还是减函数,并给予证明。(小组合作交流)【设计意图】让学生体会符号化,形式化的必要性。生9:老师,该函数的图象是什么?师:这位同学问得非常好,那么在不知图象的前提下,我们能得知该函数是增还是减吗?(让学生大胆的去猜想)生10:可以用定义法证明函数()1xfxx在(0,+∞)上是增函数。师:那么具体怎么证明呢?带着这个问题让我们先来看例1.例1.证明函数1()fxx在(0,)上是增函数.1.分析解决问题针对学生可能出现的问题,组织学生讨论、交流.证明:任取1212,(0,),xxxx且,设元121211()()fxfxxx求差2112xxxx变形12,xx∴12120,0xxxx∴,0)()(21xfxf即),()(21xfxf断号∴函数xxxf2)(在),2(上是增函数.定论2.归纳解题步骤引导学生归纳证明函数单调性的步骤:设元、作差、变形、断号、定论.问题7:能用定义法证明1()fxx在(,0)上是增函数么?问题8:能证明1()fxx在(,0)(0,)上是增函数么?〖设计意图〗函数在定义域内的两个区间A,B上都是增(或减)函数,一般不能认为函数在BA上是增(或减)函数.五、巩固概念,适当延展练习1:试判断函数()1xfxx在(0,+∞)上是增函数还是减函数,并给予证明。(最后教师用“几何画板”作出()1xfxx的图象)练习2:证明函数xxf)(在),0[上是增函数.问题8:要证明函数)(xf在区间),(ba上是增函数,除了按以上步骤来证,如果可以证得对任意的),(,21baxx,21xx,都有0)()(1212xxxfxf可以吗?引导学生分析这种叙述与定义的等价性.让学生尝试用这种等价形式证明函数xxf)(在),0[上是增函数.〖设计意图〗初步掌握根据定义证明函数单调性的方法和步骤.等价形式进一步发展可以得到导数法,为用导数方法研究函数单调性埋下伏笔.(2)巩固概念练习3:判断题:1)是增函数所以函数因为已知)(),2()1(,1)(xfffxxf.2)函数2()()(0),()[0)fxxfxffx,对任意x0满足则函数在,上为增函数.3)因为函数xxf1)(在区间),0()0,(和上都是减函数,所以xxf1)(在),0()0,(上是减函数.〖设计意图〗让学生由特殊到一般,从具体到抽象归纳出单调性的定义,通过对判断题的辨析,加深学生对定义的理解,完成对概念的第三次认识.六、归纳小结,提高认识学生交流在本节课学习中的体会、收获,交流学习过程中的体验和感受,师生合作共同完成小结.1.小结(1)概念探究过程:直观到抽象、特殊到一般、感性到理性.(2)证明方法和步骤:设元、作差、变形、断号、定论.(3)数学思想方法和思维方法:数形结合,等价转化,类比等.2.课后探究:研究函数)0(1xxxy的单调性,并结合描点法画出函数的草图.5.【课堂教学实录】教学环节教学活动问题呈现一、创设情境,引入课题课前布置任务:(1)由于某种原因,2008年北京奥运会开幕式时间由原定的7月25日推迟到8月8日,请查阅资料说明做出这个决定的主要原因.(2)通过查阅历史资料研究北京奥运会开幕式当天气温变化情况.课上通过交流,可以了解到开幕式推迟主要是天气的原因,北京的天气到8月中旬,平均气温、平均降雨量和平均降雨天数等均开始下降,比较适宜大型国际体育赛事.下图是北京市今年8月8日一天24小时内气温随时间变化的曲线图.引导学生识图,捕捉信息,启发学生思考.生1(
本文标题:《函数单调性》的教学案例
链接地址:https://www.777doc.com/doc-2830504 .html