您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 其它文档 > 《平行线的证明》全章复习与巩固(基础)知识讲解
让更多的孩子得到更好的教育地址:北京市西城区新德街20号4层电话:010-82025511传真:010-82079687第1页共6页《平行线的证明》全章复习与巩固(基础)知识讲解撰稿:孙景艳责编:吴婷婷【学习目标】1.了解定义及命题的概念与构成,并能通过证明或举反例判定命题的真假;2.区别平行线的判定与性质,并能灵活运用;3.理解并能灵活运用三角形的内角和定理及其推论.【知识网络】【要点梳理】要点一、定义、命题及证明1.定义:一般地,用来说明一个名词或者一个术语的意义的句子叫做定义.2.命题:判断一件事情的句子,叫做命题.要点诠释:(1)每个命题都由题设、结论两部分组成,题设是已知事项,结论是由已知事项推出的事项.(2)正确的命题称为真命题,不正确的命题称为假命题.(3)公认的真命题叫做公理.(4)经过证明的真命题称为定理.3.证明:在很多情况下,一个命题的正确性需要经过推理,才能作出判断,这种演绎推理的过程称为证明.要点诠释:让更多的孩子得到更好的教育地址:北京市西城区新德街20号4层电话:010-82025511传真:010-82079687第2页共6页(1)实验、观察、操作所得出的结论不一定都正确,必须推理论证后才能得出正确的结论.(2)证明中的每一步推理都要有根据,不能“想当然”,这些根据可以是已知条件,学过的定义、基本事实、定理等.(3)判断一个命题是正确的,必须经过严格的证明;判断一个命题是假命题,只需列举一个反例即可.要点二、平行线的判定与性质1.平行线的判定判定方法1:同位角相等,两直线平行.判定方法2:内错角相等,两直线平行.判定方法3:同旁内角互补,两直线平行.要点诠释:根据平行线的定义和平行公理的推论,平行线的判定方法还有:(1)平行线的定义:在同一平面内,如果两条直线没有交点(不相交),那么两直线平行.(2)如果两条直线都平行于第三条直线,那么这两条直线平行(平行线的传递性).(3)在同一平面内,垂直于同一直线的两条直线平行.(4)平行公理:经过直线外一点,有且只有一条直线与这条直线平行.2.平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.要点诠释:根据平行线的定义和平行公理的推论,平行线的性质还有:(1)若两条直线平行,则这两条直线在同一平面内,且没有公共点.(2)如果一条直线与两条平行线中的一条直线垂直,那么它必与另一条直线垂直.要点三、三角形的内角和定理及推论三角形的内角和定理:三角形的内角和等于180°.推论:(1)三角形的一个外角等于和它不相邻的两个内角的和.(2)三角形的一个外角大于任何一个和它不相邻的内角.要点诠释:(1)由一个公理或定理直接推出的真命题,叫做这个公理或定理的推论.(2)推论可以当做定理使用.【典型例题】类型一、定义、命题及证明1.指出下列命题的条件和结论,并判断命题的真假,如果是假命题,请举出反例.如果等腰三角形的两条边长为5和7,那么这个等腰三角形的周长为17.【答案与解析】解:条件:等腰三角形的两条边长为5和7结论:等腰三角形的周长为17是假命题;反例:当腰长为7,底边长为5时,周长为19【总结升华】本题考查了命题与定理的相关知识.关键是明确命题与定理的组成部分,会判断命题的题设与结论.举一反三:【变式1】某工程队,在修建兰定高速公路时,有时需将弯曲的道路改直,根据什么公理让更多的孩子得到更好的教育地址:北京市西城区新德街20号4层电话:010-82025511传真:010-82079687第3页共6页可以说明这样做能缩短路程().A.直线的公理B.直线的公理或线段最短公理C.线段最短公理D.平行公理【答案】B【变式2】下列命题真命题是().A.互补的两个角不相等B.相等的两个角是对顶角C.有公共顶点的两个角是对顶角D.同角或等角的补角相等【答案】D2.叙述并证明三角形内角和定理.要求写出定理、已知、求证,画出图形,并写出证明过程.【思路点拨】欲证明三角形的三个内角的和为180°,可以把三角形三个角转移到一个平角上,利用平角的性质解答.【答案与解析】定理:三角形的内角和是180°;已知:△ABC的三个内角分别为∠A,∠B,∠C;求证:∠A+∠B+∠C=180°.证明:如下图,过点A作直线MN,使MN∥BC.∵MN∥BC,∴∠B=∠MAB,∠C=∠NAC(两直线平行,内错角相等).∵∠MAB+∠NAC+∠BAC=180°(平角定义),∴∠B+∠C+∠BAC=180°(等量代换).即∠A+∠B+∠C=180°.【总结升华】本题考查的是三角形内角和定理,即三角形的内角和是180°.类型二、平行线的判定与性质3.(佳木斯中考)如图所示,请你填写一个适当的条件:________,使AD∥BC.【思路点拨】欲证AD∥BC,结合图形,故可按同位角相等、内错角相等和同旁内角互补两直线平行来补充条件.让更多的孩子得到更好的教育地址:北京市西城区新德街20号4层电话:010-82025511传真:010-82079687第4页共6页【答案】∠FAD=∠FBC,或∠ADB=∠CBD,或∠ABC+∠BAD=180°.【解析】解:本题答案不唯一,如:利用“同位角相等,两直线平行”,可添加条件∠FAD=∠FBC;利用“内错角相等,两直线平行”,可添加条件∠ADB=∠CBD;利用“同旁内角互补,两直线平行”,可添加条件∠ABC+∠BAD=180°.【总结升华】这是一道开放性试题,分清题设和结论:结论:AD∥BC,题设可根据平行线的判定方法,逐一寻找即可.4.如图,已知∠ADE=∠B,∠1=∠2,那么CD∥FG吗?并说明理由.【答案与解析】解:平行,理由如下:因为∠ADE=∠B,所以DE∥BC(同位角相等,两直线平行),所以∠1=∠BCD(两直线平行,内错角相等).又因为∠1=∠2(已知),所以∠BCD=∠2.所以CD∥FG(同位角相等,两直线平行).【总结升华】反复应用平行线的判定与性质,见到角相等或互补,就应该想到判断直线是否平行,见到直线平行就应先想到角相等或角互补.【高清课堂:相交线与平行线单元复习403105经典例题3】举一反三:【变式】如图,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠ACB的大小关系,并说明理由.【答案】∠AED=∠ACB,理由如下:∵∠1+∠2=180°,又∠1+∠4=180°,∴∠2=∠4.让更多的孩子得到更好的教育地址:北京市西城区新德街20号4层电话:010-82025511传真:010-82079687第5页共6页∴AB∥EF(内错角相等,两直线平行).∴∠5=∠3.又∠3=∠B,∴∠5=∠B.∴DE∥BC(同位角相等,两直线平行).∴∠AED=∠ACB(两直线平行,同位角相等).类型三、三角形的内角和定理及推论5.请你利用“三角形内角和定理”证明“四边形的内角和等于360°”.四边形ABCD如图所示.【思路点拨】将四边形转化为三角形去解决.【答案与解析】证明:如下图,连接AC∵∠B+∠BAC+∠ACB=180°,∠D+∠DAC+∠ACD=180°,∴(∠B+∠BAC+∠ACB)+(∠D+∠DAC+∠ACD)=180°+180°.∴∠B+∠D+(∠BAC+∠DAC)+(∠ACB+∠ACD)=360°.∴∠B+∠C+∠BAD+∠BCD=360°.即四边形ABCD的内角和等于360°.【总结升华】把不熟悉的多边形分成熟悉的三角形,利用三角形的内角和推导多边形的内角和是解题的关键,同理可以得到n边形的内角和公式为:(n-2)×180°.6.已知:如图,在△ABC中,DE∥BC,F是AB上的一点,FE的延长线交BC的延长线于点G.求证:∠EGH>∠ADE.DCBA让更多的孩子得到更好的教育地址:北京市西城区新德街20号4层电话:010-82025511传真:010-82079687第6页共6页【答案与解析】证明:∵DE∥BC,∴∠ADE=∠B.∵∠EGH>∠B,∴∠EGH>∠ADE(等量代换).【总结升华】“三角形的内角和定理推论2”是证明角不等关系的重要依据之一.举一反三:【变式】在△ABC中,∠A=50°,∠B=70°,则∠C的外角等于________.【答案】120°
本文标题:《平行线的证明》全章复习与巩固(基础)知识讲解
链接地址:https://www.777doc.com/doc-2835757 .html