您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 信息化管理 > 《概率与统计》习题答案(复旦大学)
习题二1.一袋中有5只乒乓球,编号为1,2,3,4,5,在其中同时取3只,以X表示取出的3只球中的最大号码,写出随机变量X的分布律.【解】故所求分布律为X345P0.10.30.62.设在15只同类型零件中有2只为次品,在其中取3次,每次任取1只,作不放回抽样,以X表示取出的次品个数,求:(1)X的分布律;(2)X的分布函数并作图;(3).【解】故X的分布律为X012P(2)当x0时,F(x)=P(X≤x)=0当0≤x1时,F(x)=P(X≤x)=P(X=0)=当1≤x2时,F(x)=P(X≤x)=P(X=0)+P(X=1)=当x≥2时,F(x)=P(X≤x)=1故X的分布函数(3)3.射手向目标独立地进行了3次射击,每次击中率为0.8,求3次射击中击中目标的次数的分布律及分布函数,并求3次射击中至少击中2次的概率.【解】设X表示击中目标的次数.则X=0,1,2,3.故X的分布律为X0123P0.0080.0960.3840.512分布函数4.(1)设随机变量X的分布律为P{X=k}=,其中k=0,1,2,…,λ>0为常数,试确定常数a.(2)设随机变量X的分布律为P{X=k}=a/N,k=1,2,…,N,试确定常数a.【解】(1)由分布律的性质知故(2)由分布律的性质知即.5.甲、乙两人投篮,投中的概率分别为0.6,0.7,今各投3次,求:(1)两人投中次数相等的概率;(2)甲比乙投中次数多的概率.【解】分别令X、Y表示甲、乙投中次数,则X~b(3,0.6),Y~b(3,0.7)(1)+(2)=0.2436.设某机场每天有200架飞机在此降落,任一飞机在某一时刻降落的概率设为0.02,且设各飞机降落是相互独立的.试问该机场需配备多少条跑道,才能保证某一时刻飞机需立即降落而没有空闲跑道的概率小于0.01(每条跑道只能允许一架飞机降落)?【解】设X为某一时刻需立即降落的飞机数,则X~b(200,0.02),设机场需配备N条跑道,则有即利用泊松近似查表得N≥9.故机场至少应配备9条跑道.7.有一繁忙的汽车站,每天有大量汽车通过,设每辆车在一天的某时段出事故的概率为0.0001,在某天的该时段内有1000辆汽车通过,问出事故的次数不小于2的概率是多少(利用泊松定理)?【解】设X表示出事故的次数,则X~b(1000,0.0001)8.已知在五重贝努里试验中成功的次数X满足P{X=1}=P{X=2},求概率P{X=4}.【解】设在每次试验中成功的概率为p,则故所以.9.设事件A在每一次试验中发生的概率为0.3,当A发生不少于3次时,指示灯发出信号,(1)进行了5次独立试验,试求指示灯发出信号的概率;(2)进行了7次独立试验,试求指示灯发出信号的概率.【解】(1)设X表示5次独立试验中A发生的次数,则X~6(5,0.3)(2)令Y表示7次独立试验中A发生的次数,则Y~b(7,0.3)10.某公安局在长度为t的时间间隔内收到的紧急呼救的次数X服从参数为(1/2)t的泊松分布,而与时间间隔起点无关(时间以小时计).(1)求某一天中午12时至下午3时没收到呼救的概率;(2)求某一天中午12时至下午5时至少收到1次呼救的概率.【解】(1)(2)11.设P{X=k}=,k=0,1,2P{Y=m}=,m=0,1,2,3,4分别为随机变量X,Y的概率分布,如果已知P{X≥1}=,试求P{Y≥1}.【解】因为,故.而故得即从而12.某教科书出版了2000册,因装订等原因造成错误的概率为0.001,试求在这2000册书中恰有5册错误的概率.【解】令X为2000册书中错误的册数,则X~b(2000,0.001).利用泊松近似计算,得13.进行某种试验,成功的概率为,失败的概率为.以X表示试验首次成功所需试验的次数,试写出X的分布律,并计算X取偶数的概率.【解】14.有2500名同一年龄和同社会阶层的人参加了保险公司的人寿保险.在一年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交12元保险费,而在死亡时家属可从保险公司领取2000元赔偿金.求:(1)保险公司亏本的概率;(2)保险公司获利分别不少于10000元、20000元的概率.【解】以“年”为单位来考虑.(1)在1月1日,保险公司总收入为2500×12=30000元.设1年中死亡人数为X,则X~b(2500,0.002),则所求概率为由于n很大,p很小,λ=np=5,故用泊松近似,有(2)P(保险公司获利不少于10000)即保险公司获利不少于10000元的概率在98%以上P(保险公司获利不少于20000)即保险公司获利不少于20000元的概率约为62%15.已知随机变量X的密度函数为f(x)=Ae|x|,x+∞,求:(1)A值;(2)P{0X1};(3)F(x).【解】(1)由得故.(2)(3)当x0时,当x≥0时,故16.设某种仪器内装有三只同样的电子管,电子管使用寿命X的密度函数为f(x)=求:(1)在开始150小时内没有电子管损坏的概率;(2)在这段时间内有一只电子管损坏的概率;(3)F(x).【解】(1)(2)(3)当x100时F(x)=0当x≥100时故17.在区间[0,a]上任意投掷一个质点,以X表示这质点的坐标,设这质点落在[0,a]中任意小区间内的概率与这小区间长度成正比例,试求X的分布函数.【解】由题意知X~∪[0,a],密度函数为故当x0时F(x)=0当0≤x≤a时当xa时,F(x)=1即分布函数18.设随机变量X在[2,5]上服从均匀分布.现对X进行三次独立观测,求至少有两次的观测值大于3的概率.【解】X~U[2,5],即故所求概率为19.设顾客在某银行的窗口等待服务的时间X(以分钟计)服从指数分布.某顾客在窗口等待服务,若超过10分钟他就离开.他一个月要到银行5次,以Y表示一个月内他未等到服务而离开窗口的次数,试写出Y的分布律,并求P{Y≥1}.【解】依题意知,即其密度函数为该顾客未等到服务而离开的概率为,即其分布律为20.某人乘汽车去火车站乘火车,有两条路可走.第一条路程较短但交通拥挤,所需时间X服从N(40,102);第二条路程较长,但阻塞少,所需时间X服从N(50,42).(1)若动身时离火车开车只有1小时,问应走哪条路能乘上火车的把握大些?(2)又若离火车开车时间只有45分钟,问应走哪条路赶上火车把握大些?【解】(1)若走第一条路,X~N(40,102),则若走第二条路,X~N(50,42),则++故走第二条路乘上火车的把握大些.(2)若X~N(40,102),则若X~N(50,42),则故走第一条路乘上火车的把握大些.21.设X~N(3,22),(1)求P{2X≤5},P{4X≤10},P{|X|>2},P{X>3};(2)确定c使P{X>c}=P{X≤c}.【解】(1)(2)c=322.由某机器生产的螺栓长度(cm)X~N(10.05,0.062),规定长度在10.05±0.12内为合格品,求一螺栓为不合格品的概率.【解】23.一工厂生产的电子管寿命X(小时)服从正态分布N(160,σ2),若要求P{120<X≤200}≥0.8,允许σ最大不超过多少?【解】故24.设随机变量X分布函数为F(x)=(1)求常数A,B;(2)求P{X≤2},P{X>3};(3)求分布密度f(x).【解】(1)由得(2)(3)25.设随机变量X的概率密度为f(x)=求X的分布函数F(x),并画出f(x)及F(x).【解】当x0时F(x)=0当0≤x1时当1≤x2时当x≥2时故26.设随机变量X的密度函数为(1)f(x)=ae|x|,λ0;(2)f(x)=试确定常数a,b,并求其分布函数F(x).【解】(1)由知故即密度函数为当x≤0时当x0时故其分布函数(2)由得b=1即X的密度函数为当x≤0时F(x)=0当0x1时当1≤x2时当x≥2时F(x)=1故其分布函数为27.求标准正态分布的上分位点,(1)=0.01,求;(2)=0.003,求,.【解】(1)即即故(2)由得即查表得由得即查表得28.设随机变量X的分布律为X21013Pk1/51/61/51/1511/30求Y=X2的分布律.【解】Y可取的值为0,1,4,9故Y的分布律为Y0149Pk1/57/301/511/3029.设P{X=k}=()k,k=1,2,…,令求随机变量X的函数Y的分布律.【解】30.设X~N(0,1).(1)求Y=eX的概率密度;(2)求Y=2X2+1的概率密度;(3)求Y=|X|的概率密度.【解】(1)当y≤0时,当y0时,故(2)当y≤1时当y1时故(3)当y≤0时当y0时故31.设随机变量X~U(0,1),试求:(1)Y=eX的分布函数及密度函数;(2)Z=2lnX的分布函数及密度函数.【解】(1)故当时当1ye时当y≥e时即分布函数故Y的密度函数为(2)由P(0X1)=1知当z≤0时,当z0时,即分布函数故Z的密度函数为32.设随机变量X的密度函数为f(x)=试求Y=sinX的密度函数.【解】当y≤0时,当0y1时,当y≥1时,故Y的密度函数为33.设随机变量X的分布函数如下:试填上(1),(2),(3)项.【解】由知②填1。由右连续性知,故①为0。从而③亦为0。即34.同时掷两枚骰子,直到一枚骰子出现6点为止,求抛掷次数X的分布律.【解】设Ai={第i枚骰子出现6点}。(i=1,2),P(Ai)=.且A1与A2相互独立。再设C={每次抛掷出现6点}。则故抛掷次数X服从参数为的几何分布。35.随机数字序列要多长才能使数字0至少出现一次的概率不小于0.9?【解】令X为0出现的次数,设数字序列中要包含n个数字,则X~b(n,0.1)即得n≥22即随机数字序列至少要有22个数字。36.已知F(x)=则F(x)是()随机变量的分布函数.(A)连续型;(B)离散型;(C)非连续亦非离散型.【解】因为F(x)在(,+∞)上单调不减右连续,且,所以F(x)是一个分布函数。但是F(x)在x=0处不连续,也不是阶梯状曲线,故F(x)是非连续亦非离散型随机变量的分布函数。选(C)37.设在区间[a,b]上,随机变量X的密度函数为f(x)=sinx,而在[a,b]外,f(x)=0,则区间[a,b]等于()(A)[0,π/2];(B)[0,π];(C)[/2,0];(D)[0,].【解】在上sinx≥0,且.故f(x)是密度函数。在上.故f(x)不是密度函数。在上,故f(x)不是密度函数。在上,当时,sinx0,f(x)也不是密度函数。故选(A)。38.设随机变量X~N(0,σ2),问:当σ取何值时,X落入区间(1,3)的概率最大?【解】因为利用微积分中求极值的方法,有得,则又故为极大值点且惟一。故当时X落入区间(1,3)的概率最大。39.设在一段时间内进入某一商店的顾客人数X服从泊松分布P(λ),每个顾客购买某种物品的概率为p,并且各个顾客是否购买该种物品相互独立,求进入商店的顾客购买这种物品的人数Y的分布律.【解】设购买某种物品的人数为Y,在进入商店的人数X=m的条件下,Y~b(m,p),即由全概率公式有此题说明:进入商店的人数服从参数为λ的泊松分布,购买这种物品的人数仍服从泊松分布,但参数改变为λp.40.设随机变量X服从参数为2的指数分布.证明:Y=1e2X在区间(0,1)上服从均匀分布.【证】X的密度函数为由于P(X0)=1,故01e2X1,即P(0Y1)=1当y≤0时,FY(y)=0当y≥1时,FY(y)=1当0y1时,即Y的密度函数为即Y~U(0,1)41.设随机变量X的密度函数为f(x)=若k使得P{X≥k}=2/3,求k的取值范围.(2000研考)【解】由P(X≥k)=知P(Xk)=若k0,P(Xk)=0若0≤k≤1,P(Xk)=当k=1时P(Xk)=若1≤k≤3时P(Xk)=若3k≤6,则P(Xk)=若k6,则P(Xk)=1故只有当1≤k≤3时满足P(X≥k)=.42.设随机变量
本文标题:《概率与统计》习题答案(复旦大学)
链接地址:https://www.777doc.com/doc-2840520 .html