您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 无锡市2017-2018学年八年级(上)期末数学试卷(解析版)
无锡市2017-2018学年八年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑)1.﹣8的立方根是()A.±2B.2C.﹣2D.不存在2.据统计,2018年国家公务员考试报名最终共有1659745人通过了招聘单位的资格审查,这个数据用科学记数法可表示为(精确到万位)()A.166×104B.1.66×106C.1.66×104D.1.659×1063.给出下列4个结论:①分数都是有理数;②无理数包括正无理数和负无理数;③两个无理数的和可能是有理数;④带根号的数都是无理数.其中正确的为()A.①②③B.①②④C.①③D.②④4.给出下列5个图形:线段、等边三角形、角、平行四边形、正五角星,其中,一定是轴对称图形的有()A.2个B.3个C.4个D.5个5.如图,在△ABC中,已知AB=AC,D、E两点分别在边AB、AC上.若再增加下列条件中的某一个,仍不能判定△ABE≌△ACD,则这个条件是()A.BE⊥AC,CD⊥ABB.∠AEB=∠ADCC.∠ABE=∠ACDD.BE=CD6.正比例函数y=x的图象可由一次函数y=x﹣3的图象()A.向上平移3个单位而得到B.向下平移3个单位而得到C.向左平移3个单位而得到D.向右平移3个单位而得到7.平面直角坐标系中,点A(3,4)关于x轴的对称点为B,AB交x轴于点C,D为OB的中点,则CD长为()A.5B.4C.3D.2.58.关于一次函数y=3x+m﹣2的图象与性质,下列说法中不正确的是()A.y随x的增大而增大B.当m≠2时,该图象与函数y=3x的图象是两条平行线C.若图象不经过第四象限,则m>2D.不论m取何值,图象都经过第一、三象限9.如图,某小区有一块直角三角形的绿地,量得两直角边AC=4m,BC=3m,考虑到这块绿地周围还有足够多的空余部分,于是打算将这块绿地扩充成等腰三角形,且扩充部分是以AC为一直角边的直角三角形,则扩充方案共有()A.2种B.3种C.4种D.5种10.在平面直角坐标系中,已知定点A(﹣,3)和动点P(a,a),则PA的最小值为()A.2B.4C.2D.4二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,只需把答案直接填写在答题卡上相应的位置)11.正数a的算术平方根记作.12.若与(y+4)2互为相反数,则x+y的平方根为.13.已知某个点在第四象限,且它的横坐标与纵坐标的和为2,请写出一个符合这样条件的点的坐标.14.已知一个长方形的长为5cm,宽为xcm,周长为ycm,则y与x之间的函数表达式为.15.分别以△ABC的各边为一边向三角形外部作正方形,若这三个正方形的面积分别为6cm2、8cm2、10cm2,则△ABC直角三角形.(填“是”或“不是”)16.如图,已知△ABC中,∠C=90°,BC=4,AC=5,将此三角形沿DE翻折,使得点A与B重合,则AE长为.17.如图,已知一次函数y=kx+b的图象与正比例函数y=mx的图象相交于点P(﹣3,2),则关于x的不等式mx﹣b≥kx的解集为.18.在平面直角坐标系中,已知A、B、C、D四点的坐标依次为(0,0)、(6,0)(8,6)、(2,6),若一次函数y=mx﹣6m的图象将四边形ABCD的面积分成1:3两部分,则m的值为.三、解答题(本大题共8小题,共66分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(8分)(1)计算:+(﹣2)0+()﹣2;(2)已知8x2﹣2=0,求x的值.20.(8分)如图,已知△ABM和△ACM关于直线AM对称,延长BM、CM,分别交AC、AB于点D、E.请找出图中与DM一定相等的线段,并说明理由.21.(8分)如图,已知OC平分∠AOB.请按要求画图并解答:(1)在OC上任取一点D,画点D到OA、OB的垂线段DE、DF,垂足分别为点E、F,求证:OE=OF;(2)过点D画OB的平行线交OA于点G,求证:△ODG为等腰三角形.22.(8分)已知一次函数y=kx﹣5的图象经过点A(2,﹣1).(1)求k的值;(2)画出这个函数的图象;(3)若将此函数的图象向上平移m个单位后与坐标轴围成的三角形的面积为1,请直接写出m的值.23.(8分)如图为一个广告牌支架的示意图,其中AB=13m,AD=12m,BD=5m,AC=15m,求图中△ABC的周长和面积.24.(6分)如图,在由边长为1的小正方形组成的网格图中有两个格点A、B.(注:网格线交点称为格点)(1)请直接写出AB的长:;(2)请在图中确定格点C,使得△ABC的面积为12.如果符合题意的格点C不止一个,请分别用C1、C2、C3…表示;(3)请用无刻度的直尺在图中以AB为一边画一个面积为18的长方形ABMN.(不要求写画法,但要保留画图痕迹)25.(10分)在一次全程为20km的越野赛中,甲、乙两名选手所跑的路程y(km)与时间x(h)之间函数关系的图象如图中折线O﹣A﹣B﹣C和线段OD所示,两图象的交点为M.根据图中提供的信息,解答下列问题:(1)请求出图中a的值;(2)在乙到达终点之前,问:当x为何值时,甲、乙两人相距2km?26.(10分)如图,在平面直角坐标系中,已知A(2,0),以OA为一边在第四象限内画正方形OABC,D(m,0)为x轴上的一个动点(m>2),以BD为一直角边在第四象限内画等腰直角△BDE,其中∠DBE=90°.(1)试判断线段AE、CD的数量关系,并说明理由;(2)设DE的中点为F,直线AF交y轴于点G.问:随着点D的运动,点G的位置是否会发生变化?若保持不变,请求出点G的坐标;若发生变化,请说明理由.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑)1.﹣8的立方根是()A.±2B.2C.﹣2D.不存在【分析】根据立方根的定义进行解答.【解答】解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2,故选:C.【点评】本题主要考查了立方根,解决本题的关键是数积立方根的定义.2.据统计,2018年国家公务员考试报名最终共有1659745人通过了招聘单位的资格审查,这个数据用科学记数法可表示为(精确到万位)()A.166×104B.1.66×106C.1.66×104D.1.659×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.再精确到万位即可求解.【解答】解:1659745这个数据用科学记数法可表示为(精确到万位)1.66×106.故选:B.【点评】此题主要考查了科学记数法与有效数字,把一个数M记成a×10n(1≤|a|<10,n为整数)的形式,这种记数的方法叫做科学记数法.规律:(1)当|a|≥1时,n的值为a的整数位数减1;(2)当|a|<1时,n的值是第一个不是0的数字前0的个数,包括整数位上的0.注意本题精确到万位,3.给出下列4个结论:①分数都是有理数;②无理数包括正无理数和负无理数;③两个无理数的和可能是有理数;④带根号的数都是无理数.其中正确的为()A.①②③B.①②④C.①③D.②④【分析】①根据有理数的定义即可判定;②根据无理数的分类即可判定;③④根据无理数的概念即可判断.【解答】解:①分数都是有理数是正确的;②无理数包括正无理数和负无理数是正确的;③两个无理数的和可能是有理数是正确的;④带根号的数不一定是无理数,如=2,故原来的说法是错误的.故选:A.【点评】此题主要考查了有理数、无理数的定义及实数的分类.无理数是无限不循环小数,其中有开方开不尽的数,如2,33等,也有π这样的数.有限小数和无限循环小数都可以化为分数,也就是说,一切有理数都可以用分数来表示;而无限不环小数不能化为分数,它是无理数.4.给出下列5个图形:线段、等边三角形、角、平行四边形、正五角星,其中,一定是轴对称图形的有()A.2个B.3个C.4个D.5个【分析】根据轴对称图形的概念对各图形分析判断即可得解.【解答】解:线段、一定是轴对称图形,等边三角形、一定是轴对称图形,角、一定是轴对称图形,平行四边形、不一定是轴对称图形,正五角星、一定是轴对称图形,综上所述,一定是轴对称图形的有4个.故选:C.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.如图,在△ABC中,已知AB=AC,D、E两点分别在边AB、AC上.若再增加下列条件中的某一个,仍不能判定△ABE≌△ACD,则这个条件是()A.BE⊥AC,CD⊥ABB.∠AEB=∠ADCC.∠ABE=∠ACDD.BE=CD【分析】三角形中∠ABC=∠ACB,则AB=AC,又∠A=∠A,由全等三角形判定定理对选项一一分析,排除错误答案.【解答】解:添加A选项中条件可用AAS判定两个三角形全等;添加B选项中条件可用AAS判定两个三角形全等;添加C选项中条件可用ASA判定两个三角形全等;添加D选项以后是SSA,无法证明三角形全等;故选:D.【点评】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目.6.正比例函数y=x的图象可由一次函数y=x﹣3的图象()A.向上平移3个单位而得到B.向下平移3个单位而得到C.向左平移3个单位而得到D.向右平移3个单位而得到【分析】根据平移法则上加下减可得出平移后的解析式.【解答】解:由题意得:一次函数y=x的图象可由一次函数y=x﹣3的图象向上平移3个单位长度得到.故选:A.【点评】本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.7.平面直角坐标系中,点A(3,4)关于x轴的对称点为B,AB交x轴于点C,D为OB的中点,则CD长为()A.5B.4C.3D.2.5【分析】根据题意画出图形,再利用直角三角形的性质得出答案.【解答】解:如图所示:△OCB是直角三角形,BO==5,∵D为OB的中点,∴DC=×5=2.5.故选:D.【点评】此题主要考查了关于x轴对称点的性质以及直角三角形的性质,正确掌握直角三角形的性质是解题关键.8.关于一次函数y=3x+m﹣2的图象与性质,下列说法中不正确的是()A.y随x的增大而增大B.当m≠2时,该图象与函数y=3x的图象是两条平行线C.若图象不经过第四象限,则m>2D.不论m取何值,图象都经过第一、三象限【分析】根据一次函数的增减性判断A;根据两条直线平行时,k值相同而b值不相同判断B;根据一次函数图象与系数的关系判断C、D.【解答】解:A、一次函数y=3x+m﹣2中,∵k=3>0,∴y随x的增大而增大,故本选项正确;B、当m≠2时,m﹣2≠0,一次函数y=3x+m﹣2与y=3x的图象是两条平行线,故本选项正确;C、若图象不经过第四象限,则经过第一、三象限或第一、二、三象限,所以m﹣2≥0,即m≥2,故本选项错误;D、一次函数y=3x+m﹣2中,∵k=3>0,∴不论m取何值,图象都经过第一、三象限,故本选项正确.故选:C.【点评】本题考查了两条直线的平行问题:若直线y1=k1x+b1与直线y2=k2x+b2平行,那么k1=k2,b1≠b2.也考查了一次函数的增减性以及一次函数图象与系数的关系.9.如图,某小区有一块直角三角形的绿地,量得两直角边AC=4m,BC=3m,考虑到这块绿地周围还有足够多的空余部分,于是打算将这块绿地扩充成等腰三角形,且扩充部分是以AC为一直角边的直角三角形,则扩充方案共有()A.2种B.3种C.4种D.5种【分析】由于扩
本文标题:无锡市2017-2018学年八年级(上)期末数学试卷(解析版)
链接地址:https://www.777doc.com/doc-2847142 .html