您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 广告经营 > SDH原理之第8章传输性能
SDH原理第八章传输性能8-1第8章传输性能第8章传输性能..........................................................................................................................18.1误码性能...............................................................................................................................18.1.1误码的产生和分布......................................................................................................18.1.2误码性能的度量.........................................................................................................28.1.3数字段相关的误码指标..............................................................................................38.1.4误码减少策略.............................................................................................................38.2可用性参数...........................................................................................................................48.3抖动漂移性能........................................................................................................................48.3.1抖动和漂移的产生机理..............................................................................................58.3.2抖动性能规范.............................................................................................................58.3.3抖动减少的策略.........................................................................................................6小结.............................................................................................................................................7习题.............................................................................................................................................7目标:掌握常见度量误码性能指标的含义。了解系统误码的产生机理和减小误码的策略。掌握常见度量系统抖动性能指标的含义。了解抖动产生的机理和抖动减少的策略。了解漂移和可用性的含义。传输系统的性能对整个通信网的通信质量起着至关重要的作用。影响SDH传输网传输性能的主要传输损伤包括误码、抖动和漂移。8.1误码性能误码是指经接收、判决、再生后,数字码流中的某些比特发生了差错,使传输的信息质量产生损伤。8.1.1误码的产生和分布误码可说是传输系统的一大害,轻则使系统稳定性下降,重则导致传输中断(10-3以上)。从网络性能角度出发可将误码分成两大类。SDH原理第八章传输性能8-21.内部机理产生的误码系统的此种误码包括由各种噪声源产生的误码;定位抖动产生的误码;复用器、交叉连接设备和交换机产生的误码;以及由光纤色散产生的码间干扰引起的误码,此类误码会由系统长时间的误码性能反应出来。2.脉冲干扰产生的误码由突发脉冲诸如电磁干扰、设备故障、电源瞬态干扰等原因产生的误码。此类误码具有突发性和大量性,往往系统在突然间出现大量误码,可通过系统的短期误码性能反映出来。8.1.2误码性能的度量传统的误码性能的度量(G.821)是度量64kbit/s的通道在27500km全程端到端连接的数字参考电路的误码性能,是以比特的错误情况为基础的。当传输网的传输速率越来越高,以比特为单位衡量系统的误码性能有其局限性。目前高比特率通道的误码性能是以块为单位进行度量的(B1、B2、B3监测的均是误码块),由此产生出一组以“块”为基础的一组参数。这些参数的含义如下:误块当块中的比特发生传输差错时称此块为误块。诀窍:对B1、B2、B3块进行监测时,只能监测出该块中奇数个比特发生差错,对块中偶数个比特发生差错则监测不出。想想看为什么?误块秒(ES)和误块秒比(ESR)当某一秒中发现1个或多个误码块时称该秒为误块秒。在规定测量时间段内出现的误块秒总数与总的可用时间的比值称之为误块秒比。严重误块秒(SES)和严重误块秒比(SESR)某一秒内包含有不少于30%的误块或者至少出现一个严重扰动期(SDP)时认为该秒为严重误块秒。其中严重扰动期指在测量时,在最小等效于4个连续块时间或者1ms(取二者中较长时间段)时间段内所有连续块的误码率≥10-2或者出现信号丢失。在测量时间段内出现的SES总数与总的可用时间之比称为严重误块秒比(SESR)。SDH原理第八章传输性能8-3严重误块秒一般是由于脉冲干扰产生的突发误块,所以SESR往往反映出设备抗干扰的能力。背景误块(BBE)和背景误块比(BBER)扣除不可用时间和SES期间出现的误块称之为背景误块(BBE)。BBE数与在一段测量时间内扣除不可用时间和SES期间内所有块数后的总块数之比称背景误块比(BBER)。若这段测量时间较长,那么BBER往往反映的是设备内部产生的误码情况,与设备采用器件的性能稳定性有关。8.1.3数字段相关的误码指标ITU-T将数字链路等效为全长27500km的假设数字参考链路,并为链路的每一段分配最高误码性能指标,以便使主链路各段的误码情况在不高于该标准的条件下连成串之后能满足数字信号端到端(27500km)正常传输的要求。下面分别列出了420km、280km、50km数字段应满足的误码性能指标。表8-1420kmHRDS误码性能指标速率(kbit/s)1555206220802488320ESR3.696×10-3待定待定SESR4.62×10-54.62×10-54.62×10-5BBER2.31×10-62.31×10-62.31×10-6表8-2280kmHRDS误码性能指标速率(kbit/s)1555206220802488320ESR2.464×10-3待定待定SESR3.08×10-53.08×10-53.08×10-5BBER3.08×10-61.54×10-61.54×10-6表8-350kmHRDS误码性能指标速率(kbit/s)1555206220802488320ESR4.4×10-4待定待定SESR5.5×10-65.5×10-65.5×10-6BBER5.5×10-72.7×10-72.7×10-78.1.4误码减少策略内部误码的减小SDH原理第八章传输性能8-4改善收信机的信噪比是降低系统内部误码的主要途径。另外,适当选择发送机的消光比,改善接收机的均衡特性,减少定位抖动都有助于改善内部误码性能。在再生段的平均误码率低于10-14数量级以下,可认为处于“无误码”运行状态。外部干扰误码的减少基本对策是加强所有设备的抗电磁干扰和静电放电能力,例如,加强接地。此外在系统设计规划时留有充足的冗度也是一种简单可行的对策。8.2可用性参数不可用时间传输系统的任一个传输方向的数字信号连续10秒期间内每秒的误码率均劣于10-3,从这10秒的第一秒种起就认为进入了不可用时间。可用时间当数字信号连续10秒期间内每秒的误码率均优于10-3,那么从这10秒种的第一秒起就认为进入了可用时间。可用性可用时间占全部总时间的百分比称之为可用性。为保证系统的正常使用,系统要满足一定的可用性指标。表8-4假设参考数字段可用性目标长度(km)可用性不可用性不可用时间/年42099.977%2.3×10-4120分/年28099.985%1.5×10-478分/年5099.99%1×10-452分/年8.3抖动漂移性能抖动和漂移与系统的定时特性有关。定时抖动(抖动)是指数字信号的特定时刻(例如最佳抽样时刻)相对其理想时间位置的短时间偏离。所谓短时间偏离是指变化频率高于10Hz的相位变化。而漂移指数字信号的特定时刻相对其理想时间位置的长时间的偏离,所谓长时间是指变化频率低于10Hz的相位变化。抖动和漂移会使收端出现信号溢出或取空,从而导致信号滑动损伤。SDH原理第八章传输性能8-58.3.1抖动和漂移的产生机理在SDH网中除了具有其他传输网的共同抖动源——各种噪声源,定时滤波器失谐,再生器固有缺陷(码间干扰、限幅器门限漂移)等,还有两个SDH网特有的抖动源:(1)在将支路信号装入VC时,加入了固定塞入比特和控制塞入比特,分接时需要移去这些比特,这将导致时钟缺口,经滤波后产生残余抖动—-脉冲塞入抖动。(2)指针调整抖动。此种抖动是由指针进行正/负调整和去调整时产生的。对于脉冲塞入抖动,与PDH系统的正码脉冲调整产生的情况类似,可采用措施使它降低到可接受的程度,而指针调整(以字节为单位,隔三帧调整一次)产生的抖动由于频率低、幅度大,很难用一般方法加以滤除。引起SDH网漂移的普遍原因是环境温度的变化,它将使光缆传输特性变化,导致信号漂移,另外时钟系统受温度变化的影响也会出现漂移。最后,SDH网络单元中指针调整和网同步的结合也会产生很低频率的抖动和漂移。不过总体说来SDH网的漂移主要来自各级时钟和传输系统,特别是传输系统。8.3.2抖动性能规范SDH网中常见的度量抖动性能的参数如下:1.输入抖动容限输入抖动容限分为PDH输入口的(支路口)和STM-N输入口(线路口)的两种输入抖动容限。对于PDH输入口则是在使设备不产生误码的情况下,该输口所能承受的最大输入抖动值。由于PDH网和SDH网的长期共存,使传输网中有SDH网元上PDH业务的需要,要满足这个需求则必须该SDH网元的支路输入口,能包容PDH支路信号的最大抖动,即该支路口的抖动容限能承受得了所上PDH信号的抖动。线路口(STM-N)输入抖动容限定义为能使光设备产生1dB光功率代价的正弦峰—峰抖动值。这参数是用来规范当SDH网元互连在一起接传输STM-N信号时,本级网元的输入抖动容限应能包容上级网元产生的输出抖动。技术细节:什么是光功率代价?由抖动、漂移和光纤色散等原因引起的系统信噪比降低导致误码增大的情况,可以通过加大发送机的发光功率得以弥补,也就是说由于抖动、漂移和色散等原因使系统的性能指标劣化到某一特定的指标以下,为使系统指标达到这一特SDH原理第八章传输性能8-6定指标,可以通过增加发光功率的方法得以解
本文标题:SDH原理之第8章传输性能
链接地址:https://www.777doc.com/doc-2857729 .html