您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 园林工程 > 《DNA复制转录与翻译练习》参考答案
《DNA复制、转录与翻译练习》参考答案一、名词解释(略)二、问答题1、答:DNA在复制时首先两条链之间的氢键断裂两条链分开,然后以每一条链分别做模板各自合成一条新的DNA链,这样新合成的子代DNA分子中一条链来自亲代DNA,另一条链是新合成的,这种复制方式为半保留复制(semiconservativereplication)。并非所有的DNA复制都以半保留的方式进行,但双链DNA通常都以半保留方式复制。2、答:在E.coli中,共发现了3种DNA聚合酶,即DNA聚合酶Ⅰ、Ⅱ、Ⅲ。DNA聚合酶Ⅰ是个多功能酶,具有5’--→3’聚合功能;3’--→5’外切功能以及3’--→5’外切功能。DNA聚合酶Ⅱ与DNA聚合酶Ⅰ功能相似,但没有5’--→3’外切功能。DNA聚合酶Ⅲ与DNA聚合酶Ⅱ功能相同,但其聚合活性比DNA聚合酶Ⅰ高1000倍,是E.coliDNA复制中的最主要酶。DNA聚合酶Ⅳ和Ⅴ是在1999年才被发现的,它涉及DNA的错误倾向修复(errorpronerepair)。当DNA受到较严重损伤时,即可诱导产生这两个酶,使修复缺乏准确性(accuracy),因而出现高突变率。其生物学意义在于高突变率虽会杀死许多细胞,但至少可以克服复制障碍,使少数突变的细胞得以存活。3、答:DNA的双螺旋结构中的两条链是反向平行的,当复制开始解链时,亲代DNA分子中一条母链的方向为5′~3′,另一条母链的方向为3′~5′。DNA聚合酶只能催化5′~3′合成方向。在以3′~5′方向的母链为模板时,复制合成出一条5′~3′方向的前导链,前导链的前进方向与复制叉的行进方向一致,前导链的合成是连续进行的。而另一条母链仍以3′~5′方向作为模板,复制合成一条5′~3′方向的随从链,因此随从链会成方向是与复制叉的行进方向相反的。随从链的合成是不连续进行的,先合成许多片段,即冈崎片段。最后各段再连接成为一条长链。由于前导链的合成连续进行的,而随从链的合成是不连续进行的,所以从总体上看DNA的复制是半不连续复制。DNA复制时,在滞后链上,较短的DNA片段(大约1000-2000个核苷酸)是在分段合成引物的基础上,非连续合成的,这些不连续的DNA片段最先由日本科学家冈崎在电子显微镜下发现,故称为冈崎片断(Okazakifragment)。引发体在滞后链上沿5'→3'方向不停的移动(这是一种相对移动,也可能是滞后链模板在移动),在一定距离上反复合成RNA引物。DNA聚合酶Ⅲ从RNA引物的3,-OH端合成冈崎片段。4、答:DNA复制起始的体外实验表明需要6种蛋白,DnaA、DnaB、DnaC、组蛋白样蛋白(HU)回旋酶及单链结合蛋白(SSB)形成起始复合物。DnaA单体首先结合到复制起始点上4个含9bp的重复顺序上。然后20~40个DnaA单体结合到复制起始点形成一个核心。在DnaA蛋白的作用下位于复制起始点右侧的3个含13bp的重复顺序开始解链形成开放复合体。DnaB/DnaC在复制起始区充当了起始的引发体(primosome)。DnaB?DnaC复合体转变为DnaB六聚物,形成复制叉。DnaB提供解旋酶(helicase)活性,使DNA解旋,可能它识别复制叉上潜在的单链结构,从13bp的重复顺序上取代出DnaA,并开始解螺旋。DnaB在复制起始区域以很少的量(1-2六聚物)担负着催化作用。在那儿DnaB还具有激活DnaG引发酶的能力。解旋反应还需要另外两种蛋白,旋转酶(Gyrase)和SSB(单链结合蛋白)。旋转酶也就是TopⅡ,其作用是解旋,即让一条链绕着另一条链旋转。若没有这步反应,解开双链就会产生DNA的扭曲。SSB可使已形成的单链处于稳定状态。拓扑异构酶Ⅰ(TopoⅠ),将环状双链DNA的一条链切开一个口,切口处链的末端绕螺旋轴按照松弛超螺旋的方向转动,然后再将切口封起。拓扑酶I松弛超螺旋不需ATP参与。拓扑异构酶Ⅱ(TopoⅡ),它的作用特点是切开环状双链DNA的两条链,分子中的断端经切口穿过而旋转,然后封闭切口。TopoⅡ在ATP参与下,将DNA分子从松弛状态转变为负超螺旋,为DNA分子解链后进行复制及转录作好准备。5、答:与DNA复制有关的酶和蛋白质因子由30多种,他们在复制叉上形成离散的复合物,彼此配合,进行高度精确的复制,这种结构称为复制体。复制体的主要成分有,DnaA、DnaB、DnaC、组蛋白样蛋白(HU)回旋酶、单链结合蛋白(SSB)、引物合成酶、RNA聚合酶、DNA旋转酶,Dam甲基化酶以及DNA聚合酶等。复制体在DNA复制叉上进行的基本活动包括:双链的解开,RNA引物的合成,DNA链的延长,切除引物,填补缺口,连接相邻的DNA片断,切除和修复尿嘧啶和错配碱基。6、答:DNA的复制过程包括复制的起始、延伸和终止三个阶段。(1)复制的起始引发:当DNA的双螺旋解开后,合成RNA引物。引发体沿着模板链5’→3’方向移动(与冈崎片段合成的方向正好相反,而与复制叉移动的方向相同),移到一定位置上即可引发RNA引物的合成。(2)DNA链的延伸前导链只需要一个RNA引物,后随链的每一个冈崎片段都需要一个RNA引物,链的延长反应由DNApol.Ⅲ催化。复制体沿着复制叉方向前进合成DNA。DNApolⅠ的5,→3,外切活力,切除RNA引物。DNApolⅠ的5,→3,合成活性补齐缺口。DNAligase,动物、真核由ATP供能,原核由NAD供能。(3)DNA合成的终止环状DNA、线性DNA,复制叉相遇即终止。DNA复制的调控主要是起始阶段的调控。原核生物DNA复制的调控与其生长环境有关,真核生物DNA复制的调控与细胞周期蛋白等多种蛋白质因子有关,机制十分复杂,但复制起始点必须全甲基化后复制才能发生。7、答:真核生物DNA聚合酶有α、β、γ、δ等五种。真核生物的DNA复制是在DNA聚合酶α与DNA聚合酶δ互相配合下催化进行的,还有一些酶及蛋白质因子参与反应。DNAPolα与引发酶共同起引发作用,然后由DNAPolδ催化前导链及随从链的合成。在链的延长中,有PCNA(增殖细胞核抗原)参与,保障连续性DNAPol的性质与DNAPolδ有相似之处,在有些情况下,它可代替DNAPolδ起作用,例如在DNA损伤时,催化修复合成。DNAPolγ是线粒体中DNA复制酶。DNAPol5′→3′外切酶活性可能在切除引物RNA中有作用。真核生物DNA聚合酶的主要功能见下表(略)8、答:真核生物线形染色体的末端具有一种特殊的结构,称为端区或端粒。端区结构中有核苷酸重复序列,一般在一条链上为TxGy,互补链为CyAx,x与y大约在1-4范围内,人的端粒区含有TTAGGG重复序列。端区具有保护DNA双链末端,使其免遭降解及彼此融合的功能。端区的平均长度随着细胞分裂次数的增多及年龄的增长而变短,可导致核生物染色体稳定性下降,并导致衰老。其分子机制在于,线形DNA分子不能从末端核苷酸外合成RNA引物,如此染色体将逐代缩短。但是在生殖细胞、胚胎细胞和肿瘤细胞中,由于有端粒酶,所以并不出现这种情况。端粒酶是一种由RNA和蛋白质组成的酶,RNA和蛋白质都是酶活性必不可少的组分。可看作是一种反转录酶。此酶组成中的RNA可作为模板,催化合成端区的DNA片段。端粒酶催化合成端区,在保证染色体复制的完整性上有重要意义。9、答:DNA指导的DNA聚合酶是以DNA为复制模板,从将DNA由5'端点开始复制到3'端的酶。DNA指导的DNA聚合酶的共同特点是:(1)需要提供合成模板;(2)不能起始新的DNA链,必须要有引物提供3'-OH;(3)合成的方向都是5'→3'(4)除聚合DNA外还有其它功能。所有原核和真核的DNA聚合酶都具有相同的合成活性,都可以在3'-OH上加核苷酸使链延伸,其速率为1000Nt/min。加什么核苷酸是根据和模板链上的碱基互补的原则而定的。DNA指导的RNA聚合酶(RNApolymerase):以一条DNA链或RNA为模板催化由核苷-5′-三磷酸合成RNA的酶。RNA聚合酶(RNApolymerase)的作用是转录RNA。有的DNA指导的RNA聚合酶有比较复杂的亚基结构。RNA指导的RNA聚合酶或RNA复制酶是在某些RNA病毒中有以病毒RNA为模板催化RNA合成的酶。RNA复制酶催化的合成反应是以RNA为模板,由5′向3′方向进行RNA链的合成。RNA复制酶缺乏校对功能的内切酶活性,因此RNA复制的错误率较高,RNA复制酶只是特异地对病毒的RNA起作用,而宿主细胞的RNA一般并不进行复制。RNA指导的DNA聚合酶是反转录酶,具有三种酶活性,即RNA指导的DNA聚合酶,RNA酶,DNA指导的DNA聚合酶。10、答:启动子是指RNA聚合酶识别、结合和开始转录的一段DNA序列。保守序列与共有序列的概念的含意基本相同。保守序列间相似度高,但不一定相同,而共有序列是相同的,共有序列可理解为是一种特殊的保守序列。Pribnow框是启动子序列的一部分。11、答:真核生物有三种RNA聚合酶:RNA聚合酶I、II、III,分别转录rRNA、mRNA、tRNA和小分子RNA。与之对应,有三种类型的启动子。类型I:Ⅰ类启动子负责转录编码核糖体RNA的多顺反子转录本。脊椎动物RNA聚合酶I的启动子有两部分组成,包括转录起点附近的核心启动子(corepromoter),和起点5’上游100bp左右的上游控制元件(upstreamcontrolelement,UCE)。核心启动子从-45到+20,负责转录的起始。UCE从-180延伸到-107,此区可增加核心元件的转录起始的效率。RNAPolⅠ需要2种辅助因子:UBF1(上游结合因子1)是一个单链多肽,它可以和核心区UCE的G.C丰富区结合。SL1因子,SL1含有4个蛋白,其中之一称TATA框结合蛋白(TBP)。SL1本身对这种启动子来说并非是特异的,但一旦UBF1和DNA结合了,那么SL1就可以协同结合在DNA上。当这两个因子都结合上了RNA聚合酶才能和核心启动子结合起始转录。类型II:RNA聚合酶Ⅱ的启动子。RNA聚合酶Ⅱ的启动子有三个保守区:(1)TATA框(Hogness框)中心在-25至-30,长度7bp左右。功能:使DNA双链解开,并决定转录的起点位置,失去TATA框,转录将可能在许多位点上开始。TATA框的改变或缺失,直接影响DNA与酶的结合程度,会使转录起始点偏移。因此,TATA是绝大多数真核基因正确表达所必需的。由于RNA聚合酶分子有相对固定的空间结构,同此框的结合位点和转录反应催化位点的距离,决定了起始位点的正确选择。启动子特定序列和酶的正确结构,这两者把酶置于一种正确的构象中,决定了识别的正确性和转录起始的正确性。(2)CAAT框中心在-75处,9bp,共有序列GGT(G)CAATCT功能:与RNA聚合酶结合。(3)GC框在CAAT框上游,序列GGGCGG,与某些转录因子结合。CAAT和GC框均为上游序列,对转录的起始频率有较大影响。类型III:是由不同的转录因子以不同的方法来识别的。5SRNA和tRNA都属于RNA聚合酶Ⅲ启动子,但它们比较特殊,位于起始位点的下游的转录区内,因此也称为下游启动子(downstreampromoter)或基因内启动子(intragenenicpromoter)或称为内部控制区(internalcontrolregion,ICR)。snRNA基因的启动子和常见的启动子一样位于起始位点的上游,称为上游启动子(upstreamtype0fpromoter)。下游启动子又可分为1型和2型。1型内部启动子含有两个分开的boxA(TGGCNNAGTGG)和boxC(CGGTCGANNCC)序列;2型内部启动子中boxA和boxB之间的距离较宽。RNA聚合酶Ⅲ的上游启动子有3个上游元件,这些元件仅在snRNA启动子中被发现,有的SnRNA是由RNA聚合酶Ⅱ转录,有的是由RNA聚合酶Ⅲ转录。这些上游元件在一定程度上和polⅡ的启动子相似。TATA元件看来和特异的聚合酶结合上游启动子转录起始发生在起始点
本文标题:《DNA复制转录与翻译练习》参考答案
链接地址:https://www.777doc.com/doc-2864572 .html