您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 经营企划 > F1赛车部分技术浅析同济大学力学实验中心
理论力学研究性实验报告同济大学F1赛车部分技术浅析吴昱辰学号:061278专业:交通运输类班级:1班任课教师:孙杰(居中,五号字)内容摘要:F1赛车作为人类速度最快的比赛,其中的科技含量之高不言而喻,并且有相当多的技术与物理是分不开的。下面就从空气动力学和引擎这两个方面对其做一些浅显的讨论,来认识这项运动与物理的紧密联系。关键词:F1,空气动力学,引擎,V8,V10。F1空气动力学了解飞机原理的人都知道,飞机能飞上天全都因为其在起飞加速过程中产生的升力,将其送上蓝天,这就是通常所研究的空气动力学。而F1赛车与飞机不同,F1赛车对于空气动力学应用的追求是完全反向的,为了“防备”赛车在高速行驶中飞起来,需要通过一些空气动力学部件给赛车一定下压力,同时为赛车提供抓地力。我想每个人都对空气有一些感性的认识。当你坐在疾驰的汽车中,将手伸出车外,试着将手与迎风方向的角度不断调整,你会感觉到空气的升力和下压力。还可以做这样一个实验,找一张A4尺寸(297X210毫米)的纸,用食指和拇指捏着两个长边,让短边贴着自己的嘴唇,此时纸是自然垂下去的,如果对着纸的上表面吹气,会发现纸飘起来了。很显然是空气在对抗重力。如果将这个原理反向应用于跑车和赛车,空气会将汽车紧紧压在地面上,给汽车足够的抓地力。F1赛车风驰电掣的速度,能在5秒之内瞬间加速到200km/h以上,最大过弯侧向加速可达4个G,极速最高超过350km/h。怎么样,这种感觉,是不是就像要飞起来了?而这样高的速度与过弯能力,除了需要优异的悬吊设置来让轮带尽可能的保持与跑道路面接触之外,也需要足够的下压力来产生足够的摩擦力,否则空有强大的马力,在过弯时将无从发挥,因此空气动力学设计的优劣已成为今日F1决胜的关键之一。空气动力学在F1赛车上的应用主要体现在两个方面:一是让定风翼产生的下压力为轮胎提供足够的抓地力,另一个则是尽量减少赛车行驶中的空气阻力。在早年的F1比赛中,赛车与普通汽车看起来差别不大,但自从空气动力学引进后,F1赛车开始出现了显著变化,首先就是定风翼的产生。看见那巨大的定风翼,可千万别以为它只是用来做广告的,对于F1赛车,它可相当于飞机的翅膀。而赛车定风翼与飞机机翼的最大区别在于当飞机机翼因为飞机提速而产生足够升力时,赛车定风翼则将机翼的升力工作原理进行倒置。反向安装的前、后定风翼将会使空气产生下降的力量,也就是我们所称的“下压力”,以保证高速行进中的赛车“抓住”地面不会引起大幅摆动甚至是漂浮乃至侧翻。一辆F1赛车的定风翼能产生相当于赛车重量3.5倍的下压力。从上世纪60年代起,定风翼开始应用于F1赛车上,导致F1赛车的速度普遍得到提高,但由于各个车队在定风翼的使用上缺乏足够的安全保障,随之而来的是事故的增加,于是1970年F1规则对于定风翼的尺寸和应用做出了限制,这种限制一直持续到现在。赛车定风翼解决了下压力的问题,但是,何在产生下压力的同时又不增加空气阻力呢?这是动力学家在设计当今F1赛车的过程中面临的又一个基本的挑战。赛车定风翼处于不同角度下产生的下压力是各不相同的,而前后翼的角度和赛道有直接的关系,因为空气的阻力和下压力是成反比例的,如果定风翼角度小,那么赛车的空气阻力作者照片(报名照)理论力学研究性实验报告同济大学就小,最高速度就大,但是赛车缺乏下压力和稳定性;相反,如果定风翼角度大,那么赛车的阻力就大,最高速度受影响,但是赛车在弯道的抓地力就强。所以,根据赛道的不同,定风翼设置的角度也不同。一般来说,如果赛道直道长,例如德国霍根海姆和意大利蒙扎,那么就调小角度;如果赛道弯道多,例如摩纳哥蒙特卡洛,则调大角度。为了模拟赛车比赛时的空气动力学效果,几乎所有的F1车队都斥巨资修建风洞。在几乎24小时不停歇运转的风洞中,工程师们所研究的内容本身就是矛盾的,因为减少空气阻力必然影响下压力,他们所能做的只能是寻找一个美妙的平衡点。“空气动力学是赛车的最核心部分,而风洞是研发一辆性能优异赛车的最重要工具。”索伯车队老板皮特·索伯一语中的。F1车队每年都会花上300万美元到1500万美元不等的风洞操作经费来验证空气动力学组件的效率。虽然国际汽联出于减少车队成本考虑一直限制空气动力学的研究,但根本无法遏制车队间的军备竞赛。这或许就是为什么F1是世界上最豪华最昂贵的运动的原因之一吧。说到空气动力学效率,就是下压力和空气拖放阻力的比例。目标就是要获得最大的抓地力,和最小的拖放阻力。下压力是空气动力学上垂直方向的向下压力总合,这些力量是由前鼻翼和后尾翼所产生,用来把赛车压在地面上,下压力越大,赛车在跑道上的抓地力就越大。理论上,由前后翼产生的可怕力量,可以让一部F-1赛车抵抗地心引力,让600公斤重的F1赛车在隧道的天花板上倒吊著跑,因为赛车可以产生超过车身重量数倍的下压力。要让F1赛车那样高速的过弯,那么必须把车底、车顶以及车身周围的气流引导到完美的境界!F1赛车空气力学的最高境界就是“平衡”。F1赛车的抓地力约有1/3是由前轮负担,有超过2/3则是由后轮负担。在前轮采用低下压力的设置可以提高车速,但同时也会提高转向不足的趋势;转向不足就是车头会开始滑向弯外侧。相对的,如果车尾的下压力不足,那么会有转向过度的倾向,车尾就会开始打滑。这就是空气动力学在F1领域的研究与应用,虽然还不够很深入,虽然还没有很完备,但空气动力学却F1的发展紧密联系着。等待着空气动力学在赛车运用方面的又一次新革命爆发,F1的发展必将取得新的历史性的突破。F1引擎从2006年开始,F1的引擎从3.0升V10变成了2.4升V8。从字面上看只是减少了0.6升的排量和砍掉了两个气缸而已。但事实上,这是两个完全不同的概念。1、曲柄夹角不同曲柄夹角是指引擎曲轴上相邻两个曲柄之间的交叉角度,单缸的引擎不存在曲柄夹角,因为它只有一个曲柄,推动曲轴旋转一周由一个曲柄单独完成,但是V型引擎却不一样,它有多个曲柄。那么当如何协调这些曲柄顺畅的工作呢?这时便需要定义曲柄之间的角度——曲柄夹角。理论力学研究性实验报告同济大学从理论上讲,要实现扭矩波动的最小化,即保证动力输出平稳,平分曲柄夹角是最理想的方案,这就是我们所常说的等间隔燃烧角。因此V10引擎的等间隔燃烧角应为72度=360度/5,而V8引擎的等间隔燃烧角则是90度=360度/4。但非常特殊的是,V8引擎的等间隔燃烧角并不是唯一的,它还可以为180度,也被称为平角——FLAT。那么面对两种等间隔燃烧角该如何来选择呢?一般来讲,民用汽车多采用前者,因为这样能够保证动力输出的平顺行。但是对于追求高性能的赛车引擎而言,后者才是最理想的方案。2、点火顺序不一样引擎的点火顺序和等间隔燃烧角是直接相关的,在这里分为两点是为了便于理解。V10理论力学研究性实验报告同济大学引擎的点火顺序为:1-4-3-6-2-5-8-9-7-10。而V8引擎由于有两个等间隔燃烧角,因此点火顺序也有两种,分别是1-8-4-3-6-5-7-2和1-2-7-3-4-5-6-8。前者为夹角为90度时的点火顺序,后者为180度时的点火顺序。需要特别提醒的是,点火顺序的不同,将直接决定引擎的振动临界转速区域的不一样。这不仅意味着V8和V10的振动临界转速区域不同,而且即便同样是V8引擎,当选择不同的等间隔燃烧角时,引擎也将面临不同的振动特性3、振动临界转速区域不同V10引擎进入振动的关键区域是12000转/分到14000转/分,但这并不是引擎工作的主要区域(V10引擎的主要工作区域大约在17000转/分~19000转/分),而当车手加大油门让转速继续攀升后,引擎便会马上恢复平稳,因此根本没必要担心振动问题。但是V8引擎则完全不同,它进入振动的关键区域比V10要晚,大约从16000转/分开始,而且随着转速的上升会继续加剧,如果不采取措施,这将威胁到引擎的寿命,而且会增加底盘上其他部件承受的负荷,特别是与引擎相连的部件。为了解决这个问题,必须精确计算和分析引擎的每一个部件在工作中承受的负荷,确保完全可靠。然而分析个体部件仅仅是整个工作的一部分。了解在整个系统中,它们之间是怎样协同工作,同时又相互影响相互制约的才是最主要的作。下面从规则上来看引擎的变化。缸径不得超过98毫米,缸距必须在106.5mm(+/-0.2毫米)之间大家知道,高功率是F1引擎追求的第一目标。而要提高引擎功率,最直接的办法便是提高转速。但引擎的转速并不是一个可以无限增加的量,它受到的第一个约束是活塞的磨损。常识告诉我们,引擎转速越高,意味着活塞在单位时间内的运行距离越长,磨损也就越严重,那如何克服这个问题呢?这时可能大家第一个想到的是利用更高级的耐磨材料,但是不巧,国际汽联如今出台了更加严厉的材料限制条款(详情请见文章末尾的新引擎规则译文)。在这种情况下,我们必须将思维向另外一个方向转变,缩短活塞行程。原因是缩短活塞行程,就意味着活塞在相同转速下的运行距离缩短了,这当然可以降低磨损,没错!但是排量必须保持不变;因此必须将气缸压扁,结果是缸径增加了。眼看目标即将实现,但国际汽联现在将这条路也堵死了:缸径不得超过98毫米,这就是新规则的要命之处。再看后半段限制:缸距必须在106.5毫米(+/-0.2毫米)之间;这又意味着什么呢?解答这个疑问,我们需要做点数学运算。缸距是106.5毫米,是指引擎单测并排的四个气缸,其间的任何两个的轴心距离不得超过106.5毫米。在这个要求下我们通过计算的会发现,现在的气缸间距=106.5毫米-98毫米x2=8.5毫米,这个值明显大于目前V10引擎的4+-1毫米。也就是说在新规则下,不仅气缸的缸径自由度被进一步缩小,而且要想缩短引擎的尺寸都不可能,这将直接缩小大家在引擎尺寸上的差异。引擎质量不得低于95公斤;引擎重心距车底参考面的距离不得低于165毫米;曲轴中心到车底参考面的距离应在58毫米以上之所以要将这三项因素并在一起分析,是因为它们最终都牵涉到同一个问题:引擎的质量和重量分配。大家知道,要实现低重心,最直接的方法便是将配重加在引擎的底部,但是莫斯利告诉你,现在不能这么干,引擎重心距离车底参考面的距离不得低于165毫米。而且更残酷的是后面一条,引擎曲轴中心距离车底参考面的高度应在58毫米以上。众所周知,要减轻引擎的振动,一方面需要将引擎的安装位置降低,而另一个方面便需要将引擎的振动源降低,而这其中最核心的部件便是曲轴。为了达到这个目的,人们发明了干式机油底技术。但是现在,国际汽联却要求限制曲轴的高度,理论力学研究性实验报告同济大学理论力学研究性实验报告同济大学更加苛刻的材料限制:禁止使用镁合金,MMC以及铍、铱和铼等含有量超过50%的合金事实上,国际汽联对材料的限制,并不是从今年才开始的,但是却从来没有像现在这样严格过。几乎除了钢、铁和铝之外,其他的任何材料都不允许使用,这再次成为V8引擎发展的绊脚石。大家知道,材料是技术进步的基石,没有不断发现的新材料,技术进步的速度是非常有限的。一个简单的例子,为了提高引擎转速,工程师必须使用质量更轻、更加耐磨和耐高温的新材料。参考资料:://sports.sina.com.cn/f1电子邮箱:fox031229@hotmail.com2007年5月
本文标题:F1赛车部分技术浅析同济大学力学实验中心
链接地址:https://www.777doc.com/doc-2873409 .html