您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > FinalRender中文手册01
FinalRender中文手册FR是一款很棒的渲染器,掌握她其实也并不难,我收集了一些关于FR的介绍,不敢独享,贴出来和大家一起分享Localillumination(directlight)...........本地光照(直接灯)这是一个标准的光效执行计算。所使用的直接光照(directlight)是一个向前的直射灯,只计算被照射的部分,其他的非光照或者阴影不被计算。这种方式的一大优势是在那些比较慢的处理器上达到快速的渲染,然而得到的图像看起来很不真实。例如我们在一件黑暗的房间里,只有被照射的地方可见,其他的地方是纯粹的黑色。Globalillumination........................(全局光照)finalRender可以被用于间接光的分配计算,全局光照是计算所有的直接灯,包括了散焦和体积光效。对于不同数值的灯光,每一个被渲染像素将被分析。当GI(Globalillumination的简称)通过分析侦测每一个被渲染像素后就会把不同的光值数据赋予这个像素。光是经过大量不断反射计算后再能出现在我们的3D场景上。finalRender提供的菜单选项可以非常自由的调控光的值。记住,他自带的材质决定他的光的分配。WhyGlobalIllumination?..................(为什么用全局光照?)finalRender通过在场景中重建自然光创造出真实的照片级图像。光的仿真是通过先进的光线追踪技术使计算机估算出在各个物体表面的光的吸收或发散的值。对于光仿真技术有两种:一是全局光照,另一种是辐射光技术。辐射光使用一种不同的方式去计算和模拟光。他是由几何体决定的,所以它需要“次分网格物体”作为它的运算方式。他通常需要消耗大量的内存。虽然辐射渲染还有其它的缺点,但它对于光的分布计算还是非常精确的。基于光线追踪技术的全局光照计算方式与辐射光方式在核心上有着不同。你可以期待在渲染中得到不同的结果,而事实上在视觉上的结果是,这两种方式的结果是相同的,因为它们都是使用一种物理校正方式去分配光。而且,现在GI已经可以被接受,一个先进的GI必须提供他自己渲染进程的可测量性不受约束。对于其他的渲染方式每一次的计算是依赖于前一次的结果,而finalRender把每样东西可以在类似的多处理器上运行而不是这种情况,那么它将加速渲染的进程。基于这些理由所以finalRender选择了光线追踪技术去进行全局照明。Howdoesitwork?.......................(那么它是怎样工作的?)finalRender使用一种极其快速的光线追踪器去渲染GI图像。在任何一个3dsmax场景上可以对一个GI进行渲染,这个场景是被分析和编辑在一个称为“MSP-TREE”上的,他把光线追踪进程作为一个有效的数据构成(他决定物体表面光线的相交处)。没有使用“MSP-TREE”或者与之类似的方式,光线最终将不能被应用于实践或者将很快变得很慢。finalRender的光模拟引擎使用一种新的多次渲染方式,类似MONTECARLO和可确定性的光线追踪去达到最有可能的结果,当然是在可以接受的时间里。所有的光照计算开始时是基于任意一个被渲染像素的。光的计算可被分为三种主要的过程:1Directcomponent(直接光照构成):光直接的打在表面上。2Specularindirectcomponent(镜面间接光照构成):光从一个表面反射到其他表面上。3Diffuseindirectcomponent(间接漫反射光照构成):光打在一个表面上并且没有特定方向的被漫反射传播。Thedirectlightcomponent...............(直接光照构成)直接光照构成是由从一个光源直接照射一个表面上构成,没有其他的光被计算,除了一个全局环境值,这个只是加在表面顶部的。如果所有的表面没有任何直接光照,将被绘制成一个纯黑的颜色。在范例GI-1中显示出,不在光照范围内的区域将接收不到任何光线。在GI-1a这个例子中,一个直接光照情况的例子显示出没有光在球体或平面体上弹射出去,所有的没有直接光照的区域是纯黑色Caustics:Theperfectindirectlight....(散焦:一个完美的间接光)镜面间接光照构成是由一个光照射在一个表面上反射(或者传射)在一个主要的方向上到达其他的表面。这种完美的镜面光传播是通过finalRender的一种不依赖于光子而是通过光的轨迹进行控制的。他的光是来自额外从各个光源发射的光传播,然后简单的在适当的反射和折射方向上改变方向(见图),沿着每条光线和他们的反弹光线(即次级光)的能量被聚积和储藏在一个先进的3D光子数据库中。这种技术能非常有效的计算那些通过了反射或折射的表面或材质特性所应引起的物理校正光的创建。散焦可以很好的模拟像水晶杯或光学光斑这样的透明和折射材质特性。Totaldiffuseandindirectillumination....(全漫反射和间接光照)这个间接漫反射构成是由一个光打在一个表面上,并且被反射或者传射。他没有方向性(全部是漫反射),这种构成要求有成百上千的方向被测试。通常,使用这种方法创建的真实场景会是使计算非常的慢,所以一些光线的计算在特定的空间间隔采用补足点的插值方法去获取最终的结果。Systemrelatedrestrictions.............(系统相关限制)GI将帮助你获得更好更多的高质量图像,而且请注意他并非是你说想的“一键”就能解决任何问题。光的值扮演一个达到可信的图像质量效果的重要角色,一个合理的高的光值必须使获得一个全面的好的光照计算。在更精确的光照计算内发送出更多的光计算结果值,通常可得到更好的图像质量。然而这并不是说光的值是唯一导致真实渲染结果的原因。这种方式的缺点是光在场景中要被侦测。这对于所有基于GI的渲染器(包括finalRender)都是如此。图例GI-3a显示出发生在finalrender里的灯光侦测分析。在图GI-3中两个shadingpoint(投影点)以半圆随即光线的虚拟形象出现。但每一个单一的半圆光线创建出另一套半圆光线是可避免第一条光线的显示被混淆。你可以看出在例子GI-3中从天花板和墙上发射出的初始光线都不能在场景中被侦测或看见。或许有些二次光可以在这些区域被找出,但是结果可能不是那么好。场景中只是一些区域而且这些区域是使用了间接光照,他们只是在地板上小光照区域(就是指阳光穿过窗户的光)在整个房间中就是这些非常小的光照区域被用于全局光源,解决问题的方法就是增加巨大的数字来增大半圆随即光线数量。相较于其他的渲染方式,正是这种“自然”的渲染技术他将发送出1000万一条光线和更多的光子解决光照情况。IllustrationGI-3IllustrationGI-3aThecurvysurfaceproblem.............(弯曲表面问题)与光的侦测和搜集的挑战相比,还有全局光照问题必须被克服。许多辐射光照和全局光照系统是非常的“吹毛求庇”的,但他们用于较高的多边形渲染时,渲染时间将暴增。finalRender使用一种先进的方式去计算全局光,他不依赖于场景中的多边形数量。finalRender用一种附加的方法解决物体的表面,但是一个平坦的非曲面物时,并且这个给曲面物是有着50000个多边形,通过GI引擎的加工就是的好像他只有12个多边形。然而当你一旦创建诸如置换表面物体的渲染时在渲染中就会出现问题。这种置换和凹凸表面会有类似“峡谷”的情况产生,光线在这些“峡谷”来回反弹产生大量的采样点。那么finalRender的这种优化算法就不适用了。在这些“峡谷”增加大量的采样点,在现实中也是不必要的,就像你看水泥的墙的角落一样,其实不必要这样细节数。finalRender提供了一个特别的方法去解决这个任务,如果表现从一个点到另一个点改变很快,那么采样点通常是自动生成的。但是如果是类似水泥墙这种情况就应避免使用自动生成的情况发生。Controlthesurface..................(控制表面)通过使用finalRender的全局参数“curvebalance”采样点的创建可以控制细节比较一下例子GI-3b和GI-3c,你可以看到只有很少的采样点在GI-3c的弯曲区域,那么也就是说发射很少的随机光线就可以做到快速渲染。使用CurveBalance参数可以全局的控制所有物体上的效果,但是我们建议使用MAX自身的控制参数来完成这种控制。Goodnews,lightisscattering..........(好消息:光可以被离散)在提及他之前,光的分布是一个困难的任务。并且他又一条不成文的规矩:增加光的数字那么渲染的时间就会越长。finalRender在场景中是一种物理校正的方法去分配和侦测光照的层次,并且他也包括由物体的体积光效果影响光的散焦。finalRender的体积光柱本身也是一种投射光源。为了解决光线在这中场景的传播方向问题,体积光柱会投射出额外的漫反射光线,结果就像例子GI-4中看到的那样。这里的地板弹射光和灰尘也能产生散射光。OptimizingaGlobalIlluminationcalculaion......(优化全局光照计算)一旦你使用了GI你会发现你的问题是如何的加快渲染速度。以下内容是你在GI使用中常遇到的问题和解决方法。通常为了得到更好的图像质量使用GI是增加场景中的光线数量,对于目前的处理器的能力这个解决方案是不现实的。充分理解finalRender的基本概念和方法是解决优化渲染时间的唯一的方法。渲染引擎会自动在3D场景中判断哪些是重要区域和哪些是非重要区域以提高渲染速度。非重要区域采用低的采样值,finalRender提供一组参数来控制渲染的速度和质量,这些参数被分为两大类:1全局采样点密度。2自适应采样点密度控制。例子GI-5显示出一个非智能采样点的分配情况,有采样点被均匀的分布而没有考虑几何形体的细节,在渲染场景时实际可以用更少的采样点去达到同样的效果。糟糕的是有些区域需要更多的采样点去获得真实的效果。在没有什么变化的平坦表面上,采样点可以相对较少,而在这些限定区域和高对比物体就需要相对较多的采样点。finalrender使用一种先进的算法去分配物体表面的采样点子。在这些情况下某些区域的像素点会产生漫反射光,finalrender提供一种强制的Montecarlo追踪模式。IllustrationGI-5:Reducetheamountofsamplingpoints.............(减少采样点的数值)全局设置的一个最重要的参数是Balance%,这个参数控制着Min.Density(最小密度)和Max.Density(最大密度)这两个参数之间的平衡。当区100%的Balance%值时,将导致每一个投影点(像素)产生一个随机光线。低于100%的值将趋向于最大或最小密度参数值。你应避免使用100%的Balance%值,以免渲染时间增长和内存的大量消耗。采样点的密度依赖于3D场景的尺寸大小,尺寸越大密度越大,反之亦然。Min.Density和Max.Density控制着整个场景的采样值。Min.Density控制着所有表面的最小采样值,不管自适应法则将如何运用。较大的数字控制着场景的较高的采样密度。Min.Density通常用于控制着3D场景总“flat(平坦)”的区域采样值。“flat”的意思是指光影变化不强烈的区域。Min.Density不只限制那些“flat”区域,也影响那些较高密度的区域。Max.Density控制着那些照明有强烈变化的“neararea(相近区域)”,你会发现这些区域有着阴影并且物体之间相互靠得很紧。在例子GI-6中,采样点的密度和分布依赖于场景中几何形体的形状(比较GI-5图),转角出有更高的采样点,球体的阴影区比其它的“open(开放)”区域有更多的采样点。在阴影变化剧烈的情况下才会出现以上的采样分布。Illustration
本文标题:FinalRender中文手册01
链接地址:https://www.777doc.com/doc-2873613 .html