您好,欢迎访问三七文档
1BP神经网络及其在教学质量评价中的应用之前的教学质量评价,只是通过对教学指标的简单处理,如求平均值或人为的给出各指标的权值来加权求和,其评价结果带有很大主观性。利用BP神经网络建立教学质量评价系统的模型,通过调查分析得到教学评价指标,将其标量化成确定的数据作为其输入,用BP神经网络训练后作为实际输出,将之前得到的教学效果作为期望输出。比较期望输出与实际输出的误差。当误差达到期望的最小值时,认为训练成功。训练成功后可以得到比较准确的权值和阈值,用训练成功后的网络处理另一组新得到的教学评价指标,得到教学质量评价结果。该方法用于教学质量评价中,既克服了专家在评价过程中的主观因素,又得到了满意的评价结果,具有广泛的适用性。一、BP神经网络介绍BP神经网络是加州大学的Rumelhart和Mcclelland提出的一种人工神经网络学习算法,是一种按照误差逆向传播算法训练的神经网络。其学习规则为:使用梯度下降法,通过误差反向传播不断调整网络的权值和阈值,使网络的误差平方和最小。从本质上说,这是一类由大量信息处理单元通过广泛联结而构成的动态信息处理系统。BP神经网络包括信息的正向传播和误差的反向传播两个过程。信息的正向传播:将教学评价指标各数据通过网络的输入层输入网络,通过加权求和(jiijjqXWO)输入到隐层,在隐层通过作用函数(一般选取sigmod函数:f(x)=xe11)处理后作为隐层的输出2值(jO1f(jO)=jOe11)。将隐层输出值再次加权求和输入到输出层,用作用函数处理后,得到实际输出(kO2)。误差的反向传播:比较期望输出(kt)与实际输出的误差的平方和(2()E=2pipiptO),如果误差大于期望值,将进行误差的反向传播过程。利用梯度下降法(对作用函数求导),调整各层的权值和阈值。输出层到隐层权值变化(jjkkiOfOtW1'2)2(2),阈值变化('2)2(2fOtWjkki),隐层到输入层权值变化(jkijkijOfWfOtW''1)2'2)2((1),阈值变化('1)2'2)2((1fWfOtWkijkij),将其逐层向隐层和输入层反传,周而复始,直至误差达到期望最小,认为网络训练成功。之后就可以利用训练好的网络处理新的教学质量指标,得到准确的教学质量评价结果。BP神经网络逻辑结构图如下:二、BP神经网络的教学质量评价模型应用教学评价指标(每个指标打分范围0-10):x1:为人师表,以自3身行为影响学生;x2:作业适量、批改认真、耐心答疑;x3:激发学生兴趣、启发创新思维;x4:教师衣着、言谈举止及精神状态;x5:教学态度与教学技巧;x6:讲授重点突出、条理清晰;x7:能够把复杂问题清楚地表达;x8:引导学生探讨、解决问题;x9:注重教学互动、师生交流;x10:充分利用现代化教学手段。(1)输入层神经元个数的确定根据我们调查中的的教学评价指标,一共有10个指标,可将这10个指标作为模型的输入神经元,所以输入层神经元个数n=10.(2)输出层神经元个数的确定我们将评价结果作为网络的输出,输出层个数m=1(3)网络隐含层数的确定隐含层可以是一层也可以是多层,根据之前的理论证明,在对教学质量评价模型中,我们选择隐含层为1层(4)隐含层神经元个数的确定一般情况下,隐含层神经元个数是根据网络收敛性能的好坏来确定的。隐含层神经元个数过少可能训练不出网络或者网络不够强壮,但隐含层神经元个数过多,又会使学习时间过长,误差也不一定最佳,因此存在一个如何确定合适的隐含层神经元个数的问题。一般可以采用试凑法,通过比较网络输出值与期望输出值之间的误差,来确定隐层神经元个数。在本文中我们根据相关经验初定隐含层神经元个数s=8.之后将所有评价指标数据及之前得到的比较完善的教学质量评价4结果输入网络,对网络进行训练。我们取学习率=0.5,定误差最小值为e=0.00001。训练结束后,得到合适的权值阈值,用此权值阈值对之后再调查得到的评价指标进行处理,得到合适的教学质量评价结果。三、评价结果分析(1)调查问卷得到的教学指标打分,如下:X1X2X3X4X5X6X7X8X9X10实际值16.545.5698.54.575.59.57.2526667.556.575.56.576.75377.5878.577.599.568.544434.556.55.567.566.255655.56.5545.567.566.2566.5736545.56.57.566.757785655.56787.57.586585.5444.565.576.25测试(验证)5.57.54584.5788.567.25将如上8个样本的10个教学指标保存在txt文档中,把数据读入网络的输入层,经过5116次网络训练达到设定好的误差最小值,得到修改好的权值和阈值。并用训练好的网络处理新数据(5.57.54584.5788.56),得到实际输出教学质量(6.901607)。5四、结论BP神经网络模型由于其具有高度非线性函数映射功能及自适应、自学习能力,可以有效克服传统教学质量评价方法的缺陷,降低传统评价方法中指标权重确定的人为影响因素,而且精度较高。经过上述训练,我们发现BP神经网络模型的输出值与真实值之间的误差比较小,性能完全可以满足实际应用的要求。另外,网络的输出精度取决于输入的训练样本的数量,训练样本的数量越多,其输出的教学效果评估值就越接近于实际的评估值。总之,运用BP神经网络建立教学质量评价模型,可以为各学校教学管理部门寻求科学的教学质量评估解决方案提供有益的参考。
本文标题:BP神经网络文档
链接地址:https://www.777doc.com/doc-2900952 .html