您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 高考圆锥曲线典型例题(必考)
19.1椭圆典例精析题型一求椭圆的标准方程【例1】已知点P在以坐标轴为对称轴的椭圆上,点P到两焦点的距离分别为453和253,过P作长轴的垂线恰好过椭圆的一个焦点,求椭圆的方程.【解析】故所求方程为x25+3y210=1或3x210+y25=1.【点拨】(1)在求椭圆的标准方程时,常用待定系数法,但是当焦点所在坐标轴不确定时,需要考虑两种情形,有时也可设椭圆的统一方程形式:mx2+ny2=1(m>0,n>0且m≠n);(2)在求椭圆中的a、b、c时,经常用到椭圆的定义及解三角形的知识.【变式训练1】已知椭圆C1的中心在原点、焦点在x轴上,抛物线C2的顶点在原点、焦点在x轴上.小明从曲线C1,C2上各取若干个点(每条曲线上至少取两个点),并记录其坐标(x,y).由于记录失误,使得其中恰有一个点既不在椭圆C1上,也不在抛物线C2上.小明的记录如下:据此,可推断椭圆C1的方程为.x212+y26=1.题型二椭圆的几何性质的运用【例2】已知F1、F2是椭圆的两个焦点,P为椭圆上一点,∠F1PF2=60°.(1)求椭圆离心率的范围;(2)求证:△F1PF2的面积只与椭圆的短轴长有关.【解析】(1)e的取值范围是[12,1).(2)21FPFS=12mnsin60°=33b2,【点拨】椭圆中△F1PF2往往称为焦点三角形,求解有关问题时,要注意正、余弦定理,面积公式的使用;求范围时,要特别注意椭圆定义(或性质)与不等式的联合使用,如|PF1|·|PF2|≤(|PF1|+|PF2|2)2,|PF1|≥a-c.【变式训练2】已知P是椭圆x225+y29=1上的一点,Q,R分别是圆(x+4)2+y2=14和圆(x-4)2+y2=14上的点,则|PQ|+|PR|的最小值是.【解析】最小值为9.题型三有关椭圆的综合问题【例3】(2010全国新课标)设F1,F2分别是椭圆E:x2a2+y2b2=1(a>b>0)的左、右焦点,过F1斜率为21的直线l与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列.(1)求E的离心率;(2)设点P(0,-1)满足|PA|=|PB|,求E的方程.(1)22.(2)为x218+y29=1.【变式训练3】已知椭圆x2a2+y2b2=1(a>b>0)的离心率为e,两焦点为F1,F2,抛物线以F1为顶点,F2为焦点,P为两曲线的一个交点,若|PF1||PF2|=e,则e的值是()A.32B.33C.22D.63【解析】选B题型思有关椭圆与直线综合问题【例4】【2012高考浙江理21】如图,椭圆C:2222+1xyab(a>b>0)的离心率为12,其左焦点到点P(2,1)的距离为10.不过原点O的直线l与C相交于A,B两点,且线段AB被直线OP平分.(Ⅰ)求椭圆C的方程;(Ⅱ)求ABP的面积取最大时直线l的方程..【变式训练4】【2012高考广东理20】在平面直角坐标系xOy中,已知椭圆C1:22221(0)xyabab的离心率e=23,且椭圆C上的点到Q(0,2)的距离的最大值为3.(1)求椭圆C的方程;(2)在椭圆C上,是否存在点M(m,n)使得直线l:mx+ny=1与圆O:x2+y2=1相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及相对应的△OAB的面积;若不存在,请说明理由.3总结提高1.椭圆的标准方程有两种形式,其结构简单,形式对称且系数的几何意义明确,在解题时要防止遗漏.确定椭圆需要三个条件,要确定焦点在哪条坐标轴上(即定位),还要确定a、b的值(即定量),若定位条件不足应分类讨论,或设方程为mx2+ny2=1(m>0,n>0,m≠n)求解.2.充分利用定义解题,一方面,会根据定义判定动点的轨迹是椭圆,另一方面,会利用椭圆上的点到两焦点的距离和为常数进行计算推理.3.焦点三角形包含着很多关系,解题时要多从椭圆定义和三角形的几何条件入手,且不可顾此失彼,另外一定要注意椭圆离心率的范围.练习1(2009全国卷Ⅰ理)已知椭圆22:12xCy的右焦点为F,右准线为l,点Al,线段AF交C于点B,若3FAFB,则||AF=()A.2B.2C.3D.3选A.2(2009浙江文)已知椭圆22221(0)xyabab的左焦点为F,右顶点为A,点B在椭圆上,且BFx轴,直线AB交y轴于点P.若2APPB,则椭圆的离心率是()A.32B.22C.13D.12【答案】D3.(2009江西卷理)过椭圆22221xyab(0ab)的左焦点1F作x轴的垂线交椭圆于点P,2F为右焦点,若1260FPF,则椭圆的离心率为A.22B.33C.12D.13【答案】B4.【2012高考新课标理4】设12FF是椭圆2222:1(0)xyEabab的左、右焦点,P为直线32ax上一点,12PFF是底角为30的等腰三角形,则E的离心率为()4()A12()B23()C()D【答案】C5【2012高考四川理15】椭圆22143xy的左焦点为F,直线xm与椭圆相交于点A、B,当FAB的周长最大时,FAB的面积是____________。【答案】36【2012高考江西理13】椭圆)0(12222babyax的左、右顶点分别是A,B,左、右焦点分别是F1,F2。若1AF,21FF,BF1成等比数列,则此椭圆的离心率为_______________.【答案】55【例4】【解析】(Ⅰ):22+143xy.(Ⅱ)易得直线OP的方程:y=12x,设A(xA,yA),B(xB,yB),R(x0,y0).其中y0=12x0.∴220220+12333434422+143AAABABABABABBBxyxyyxxkxxyyyxy.设直线AB的方程为l:y=﹣32xm(m≠0),入椭圆:2222+143333032xyxmxmyxm=-.显然222(3)43(3)3(12)0mmm.∴﹣12<m<12且m≠0.由上又有:ABxx=m,AByy=233m.∴|AB|=1ABk|ABxx|=1ABk2()4ABABxxxx=1ABk243m.∵点P(2,1)到直线l的距离表示为:31211ABABmmdkk.∴SABP=12d|AB|=12|m+2|243m,当|m+2|=243m,即m=﹣3或m=0(舍去)时,(SABP)max=12.此时直线l的方程y=﹣3122x.【变式训练4】【解析】(1)设22cab由222233cecaa,所以222213baca设(,)Pxy是椭圆C上任意一点,则22221xyab,所以222222(1)3yxaayb2222222||(2)3(2)2(1)6PQxyayyya5当1b时,当1y时,||PQ有最大值263a,可得3a,所以1,2bc当1b时,226363PQab不合题意故椭圆C的方程为:2213xy(2)AOB中,1OAOB,11sin22AOBSOAOBAOB当且仅当90AOB时,AOBS有最大值12,90AOB时,点O到直线AB的距离为22d2222212222dmnmn又22223133,22mnmn,此时点62(,)22M。9.2双曲线典例精析题型一双曲线的定义与标准方程【例1】已知动圆E与圆A:(x+4)2+y2=2外切,与圆B:(x-4)2+y2=2内切,求动圆圆心E的轨迹方程.【解析】x22-y214=1(x≥2).【点拨】利用两圆内、外切圆心距与两圆半径的关系找出E点满足的几何条件,结合双曲线定义求解,6要特别注意轨迹是否为双曲线的两支.【变式训练1】P为双曲线x29-y216=1的右支上一点,M,N分别是圆(x+5)2+y2=4和(x-5)2+y2=1上的点,则|PM|-|PN|的最大值为()A.6B.7C.8D.9【解析】选D.题型二双曲线几何性质的运用【例2】双曲线C:x2a2-y2b2=1(a>0,b>0)的右顶点为A,x轴上有一点Q(2a,0),若C上存在一点P,使PQAP=0,求此双曲线离心率的取值范围.【解析】(1,62).【点拨】根据双曲线上的点的范围或者焦半径的最小值建立不等式,是求离心率的取值范围的常用方法.【变式训练2】设离心率为e的双曲线C:x2a2-y2b2=1(a>0,b>0)的右焦点为F,直线l过焦点F,且斜率为k,则直线l与双曲线C的左、右两支都相交的充要条件是()A.k2-e2>1B.k2-e2<1C.e2-k2>1D.e2-k2<1【解析】,故选C.题型三有关双曲线的综合问题【例3】(2010广东)已知双曲线x22-y2=1的左、右顶点分别为A1、A2,点P(x1,y1),Q(x1,-y1)是双曲线上不同的两个动点.(1)求直线A1P与A2Q交点的轨迹E的方程;(2)若过点H(0,h)(h>1)的两条直线l1和l2与轨迹E都只有一个交点,且l1⊥l2,求h的值.【解析】(1)轨迹E的方程为x22+y2=1,x≠0且x≠±2.(2)符合条件的h的值为3或2.【变式训练3】双曲线x2a2-y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,离心率为e,过F2的直线与双曲线的右支交于A,B两点,若△F1AB是以A为直角顶点的等腰直角三角形,则e2等于()A.1+22B.3+22C.4-22D.5-22【解析】故选D总结提高1.要与椭圆类比来理解、掌握双曲线的定义、标准方程和几何性质,但应特别注意不同点,如a,b,c的关系、渐近线等.2.要深刻理解双曲线的定义,注意其中的隐含条件.当||PF1|-|PF2||=2a<|F1F2|时,P的轨迹是双曲线;当||PF1|-|PF2||=2a=|F1F2|时,P的轨迹是以F1或F2为端点的射线;当||PF1|-|PF2||=2a>|F1F2|时,P无轨迹.3.双曲线是具有渐近线的曲线,画双曲线草图时,一般先画出渐近线,要掌握以下两个问题:(1)已知双曲线方程,求它的渐近线;7(2)求已知渐近线的双曲线的方程.如已知双曲线渐近线y=±bax,可将双曲线方程设为x2a2-y2b2=λ(λ≠0),再利用其他条件确定λ的值,求法的实质是待定系数法.练习1、【2012高考山东理10】已知椭圆2222:1(0)xyCabab的离心学率为32.双曲线221xy的渐近线与椭圆C有四个交点,以这四个焦点为顶点的四边形的面积为16,则椭圆C的方程为(A)22182xy(B)221126xy(C)221164xy(D)221205xy【答案】D2.直线y=kx+2与双曲线x2-y2=6的右支交于不同两点,则k的取值范围是A.(-153,153)B.(0,153)C.(-153,0)D.(-153,-1)3.【2012高考湖北理14】如图,双曲线22221(,0)xyabab的两顶点为1A,2A,虚轴两端点为1B,2B,两焦点为1F,2F.若以12AA为直径的圆内切于菱形1122FBFB,切点分别为,,,ABCD.则(Ⅰ)双曲线的离心率e;(Ⅱ)菱形1122FBFB的面积1S与矩形ABCD的面积2S的比值12SS.【答案】;215e25221SS【例3】由题意知|x1|>2,A1(-2,0),A2(2,0),则有直线A1P的方程为y=y1x1+2(x+2),①直线A2Q的方程为y=-y1x1-2(x-2).②方法一:联立①②解得交点坐标为x=2x1,y=2y1x1,即x1=2x,y1=2yx,③则x≠0,|x|<2.而点P(x1,y1)在双曲线x22-y2=1上,所以x212-y21=1.将③代入上式,整理得所求轨迹E的方程为x22+y2=1,x≠0且x≠±2.方法二:设点M(x,y)是A1P与A2Q的
本文标题:高考圆锥曲线典型例题(必考)
链接地址:https://www.777doc.com/doc-2912970 .html