您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 2016年四川省高考数学试题及答案(文科)(精编版)
1绝密★启封前2016年四川省高考数学试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分.1.设i为虚数单位,则复数(1+i)2=()A.0B.2C.2iD.2+2i2.设集合A={x|1≤x≤5},Z为整数集,则集合A∩Z中元素的个数是()A.6B.5C.4D.33.抛物线y2=4x的焦点坐标是()A.(0,2)B.(0,1)C.(2,0)D.(1,0)4.为了得到函数y=sin(x+)的图象,只需把函数y=sinx的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向上平行移动个单位长度D.向下平行移动个单位长度5.设p:实数x,y满足x>1且y>1,q:实数x,y满足x+y>2,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.已知a为函数f(x)=x3﹣12x的极小值点,则a=()A.﹣4B.﹣2C.4D.27.某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是()(参考数据:lg1.12=0.05,lg1.3=0.11,lg2=0.30)A.2018年B.2019年C.2020年D.2021年8.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求多项式值的一个实例,若输入n,x的值分别为3,2,则输出v的值为()2A.35B.20C.18D.99.已知正三角形ABC的边长为2,平面ABC内的动点P,M满足||=1,=,则||2的最大值是()A.B.C.D.10.设直线l1,l2分别是函数f(x)=图象上点P1,P2处的切线,l1与l2垂直相交于点P,且l1,l2分别与y轴相交于点A,B,则△PAB的面积的取值范围是()A.(0,1)B.(0,2)C.(0,+∞)D.(1,+∞)二、填空题:本大题共5小题,每小题5分,共25分.11.sin750°=.12.已知某三棱锥的三视图如图所示,则该三棱锥的体积是.313.从2,3,8,9中任取两个不同的数字,分别记为a,b,则logab为整数的概率是.14.若函数f(x)是定义R上的周期为2的奇函数,当0<x<1时,f(x)=4x,则f(﹣)+f(2)=.15.在平面直角坐标系中,当P(x,y)不是原点时,定义P的“伴随点”为P′(,),当P是原点时,定义“伴随点”为它自身,现有下列命题:①若点A的“伴随点”是点A′,则点A′的“伴随点”是点A.②单元圆上的“伴随点”还在单位圆上.③若两点关于x轴对称,则他们的“伴随点”关于y轴对称④若三点在同一条直线上,则他们的“伴随点”一定共线.其中的真命题是.三、解答题(共6小题,满分75分)16.(12分)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…[4,4.5]分成9组,制成了如图所示的频率分布直方图.(I)求直方图中的a值;(II)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数.说明理由;(Ⅲ)估计居民月均用水量的中位数.417.(12分)如图,在四棱锥P﹣ABCD中,PA⊥CD,AD∥BC,∠ADC=∠PAB=90°,BC=CD=AD.(I)在平面PAD内找一点M,使得直线CM∥平面PAB,并说明理由;(II)证明:平面PAB⊥平面PBD.18.(12分)在△ABC中,角A,B,C所对的边分别是a,b,c,且+=.(Ⅰ)证明:sinAsinB=sinC;(Ⅱ)若b2+c2﹣a2=bc,求tanB.19.(12分)已知数列{an}的首项为1,Sn为数列{an}的前n项和,Sn+1=qSn+1,其中q>0,n∈N+(Ⅰ)若a2,a3,a2+a3成等差数列,求数列{an}的通项公式;(Ⅱ)设双曲线x2﹣=1的离心率为en,且e2=2,求e12+e22+…+en2.520.(13分)已知椭圆E:+=1(a>b>0)的一个焦点与短轴的两个端点是正三角形的三个顶点,点P(,)在椭圆E上.(Ⅰ)求椭圆E的方程;(Ⅱ)设不过原点O且斜率为的直线l与椭圆E交于不同的两点A,B,线段AB的中点为M,直线OM与椭圆E交于C,D,证明:︳MA︳•︳MB︳=︳MC︳•︳MD︳21.(14分)设函数f(x)=ax2﹣a﹣lnx,g(x)=﹣,其中a∈R,e=2.718…为自然对数的底数.(Ⅰ)讨论f(x)的单调性;(Ⅱ)证明:当x>1时,g(x)>0;(Ⅲ)确定a的所有可能取值,使得f(x)>g(x)在区间(1,+∞)内恒成立.62016年四川省高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.1.【解答】解:(1+i)2=1+i2+2i=1﹣1+2i=2i,故选:C.2.【解答】解:∵集合A={x|1≤x≤5},Z为整数集,则集合A∩Z={1,2,3,4,5}.∴集合A∩Z中元素的个数是5.故选:B.3.【解答】解:抛物线y2=4x的焦点坐标是(1,0),故选:D4.【解答】解:由已知中平移前函数解析式为y=sinx,平移后函数解析式为:y=sin(x+),可得平移量为向左平行移动个单位长度,故选:A5.【解答】解:由x>1且y>1,可得:x+y>2,反之不成立:例如取x=3,y=.∴p是q的充分不必要条件.故选:A.6.【解答】解:f′(x)=3x2﹣12;∴x<﹣2时,f′(x)>0,﹣2<x<2时,f′(x)<0,x>2时,f′(x)>0;∴x=2是f(x)的极小值点;又a为f(x)的极小值点;∴a=2.故选D.7.【解答】解:设第n年开始超过200万元,则130×(1+12%)n﹣2015>200,化为:(n﹣2015)lg1.12>lg2﹣lg1.3,n﹣2015>=3.8.取n=2019.因此开始超过200万元的年份是2019年.故选:B.8.【解答】解:∵输入的x=2,n=3,故v=1,i=2,满足进行循环的条件,v=4,i=1,满足进行循环的条件,v=9,i=0,满足进行循环的条件,v=18,i=﹣1不满足进行循环的条件,故输出的v值为:故选:C79.【解答】解:如图所示,建立直角坐标系.B(0,0),C,A.∵M满足||=1,∴点P的轨迹方程为:=1,令x=+cosθ,y=3+sinθ,θ∈[0,2π).又=,则M,∴||2=+=+3sin≤.∴||2的最大值是.故选:B.10.【解答】解:设P1(x1,y1),P2(x2,y2)(0<x1<1<x2),当0<x<1时,f′(x)=,当x>1时,f′(x)=,∴l1的斜率,l2的斜率,∵l1与l2垂直,且x2>x1>0,∴,即x1x2=1.直线l1:,l2:.取x=0分别得到A(0,1﹣lnx1),B(0,﹣1+lnx2),|AB|=|1﹣lnx1﹣(﹣1+lnx2)|=|2﹣(lnx1+lnx2)|=|2﹣lnx1x2|=2.联立两直线方程可得交点P的横坐标为x=,∴|AB|•|xP|==.∵函数y=x+在(0,1)上为减函数,且0<x1<1,8∴,则,∴.∴△PAB的面积的取值范围是(0,1).故选:A.二、填空题:本大题共5小题,每小题5分,共25分.11.【解答】解:sin750°=sin(2×360°+30°)=sin30°=,故答案为:.12.【解答】解:由三视图可知几何体为三棱锥,底面为俯视图三角形,底面积S==,棱锥的高为h=1,∴棱锥的体积V=Sh==.故答案为:.13.【解答】解:从2,3,8,9中任取两个不同的数字,分别记为a,b,基本事件总数n==12,logab为整数满足的基本事件个数为(2,8),(3,9),共2个,∴logab为整数的概率p=.故答案为:.14.【解答】解:∵函数f(x)是定义R上的周期为2的奇函数,当0<x<1时,f(x)=4x,∴f(2)=f(0)=0,f(﹣)=f(﹣+2)=f(﹣)=﹣f()=﹣=﹣=﹣2,则f(﹣)+f(2)=﹣2+0=﹣2,故答案为:﹣2.15.【解答】解:①设A(0,1),则A的“伴随点”为A′(1,0),而A′(1,0)的“伴随点”为(0,﹣1),不是A,故①错误,②若点在单位圆上,则x2+y2=1,即P(x,y)不是原点时,定义P的“伴随点”为P(y,﹣x),满足y2+(﹣x)2=1,即P′也在单位圆上,故②正确,③若两点关于x轴对称,设P(x,y),对称点为Q(x,﹣y),则Q(x,﹣y)的“伴随点”为Q′(﹣,),9则Q′(﹣,)与P′(,)关于y轴对称,故③正确,④∵(﹣1,1),(0,1),(1,1)三点在直线y=1上,∴(﹣1,1)的“伴随点”为(,),即(,),(0,1)的“伴随点”为(1,0),(1,1的“伴随点”为(,﹣),即(,﹣),则(,),(1,0),(,﹣)三点不在同一直线上,故④错误,故答案为:②③三、解答题(共6小题,满分75分)16.【解答】解:(I)∵1=(0.08+0.16+a+0.40+0.52+a+0.12+0.08+0.04)×0.5,整理可得:2=1.4+2a,∴解得:a=0.3.(II)估计全市居民中月均用水量不低于3吨的人数为3.6万,理由如下:由已知中的频率分布直方图可得月均用水量不低于3吨的频率为(0.12+0.08+0.04)×0.5=0.12,又样本容量=30万,则样本中月均用水量不低于3吨的户数为30×0.12=3.6万.(Ⅲ)根据频率分布直方图,得;0.08×0.5+0.16×0.5+0.30×0.5+0.42×0.5=0.48<0.5,0.48+0.5×0.52=0.74>0.5,∴中位数应在(2,2.5]组内,设出未知数x,令0.08×0.5+0.16×0.5+0.30×0.5+0.42×0.5+0.52×x=0.5,解得x=0.038;∴中位数是2+0.06=2.038.17.【解答】证明:(I)M为PD的中点,直线CM∥平面PAB.取AD的中点E,连接CM,ME,CE,则ME∥PA,∵ME⊄平面PAB,PA⊂平面PAB,∴ME∥平面PAB.∵AD∥BC,BC=AE,∴ABCE是平行四边形,∴CE∥AB.∵CE⊄平面PAB,AB⊂平面PAB,∴CE∥平面PAB.∵ME∩CE=E,∴平面CME∥平面PAB,∵CM⊂平面CME,∴CM∥平面PAB;(II)∵PA⊥CD,∠PAB=90°,AB与CD相交,∴PA⊥平面ABCD,∵BD⊂平面ABCD,∴PA⊥BD,由(I)及BC=CD=AD,可得∠BAD=∠BDA=45°,∴∠ABD=90°,∴BD⊥AB,∵PA∩AB=A,∴BD⊥平面PAB,∵BD⊂平面PBD,∴平面PAB⊥平面PBD.1018.【解答】(Ⅰ)证明:在△ABC中,∵+=,∴由正弦定理得:,∴=,∵sin(A+B)=sinC.∴整理可得:sinAsinB=sinC,(Ⅱ)解:b2+c2﹣a2=bc,由余弦定理可得cosA=.sinA=,=+==1,=,tanB=4.19.【解答】解:(Ⅰ)根据题意,数列{an}的首项为1,即a1=1,又由Sn+1=qSn+1,则S2=qa1+1,则a2=q,又有S3=qS2+1,则有a3=q2,若a2,a3,a2+a3成等差数列,即2a3=a2+(a2+a3),则可得q2=2q,(q>0),解可得q=2,则有Sn+1=2Sn+1,①进而有Sn=2Sn﹣1+1,②①﹣②可得an=2an﹣1,则数列{an}是以1为首项,公比为2的等比数列,则an=1×2n﹣1=2n﹣1;(Ⅱ)根据题意,有Sn+1=qSn+1,③同理可得Sn=qSn﹣1+1,④③﹣④可得:an=qan﹣1,又由q>0,则数列{an}是以1为首项,公比为q的等比数列,则an=1×qn﹣1=qn﹣1
本文标题:2016年四川省高考数学试题及答案(文科)(精编版)
链接地址:https://www.777doc.com/doc-2936004 .html