您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 2014广安中考数学试题(解析版)
2014年广安中考数学试卷一、选择题:每题给出的四个选项中,只有一个选项符合题意要求,请将正确选项填涂到机读卡上相应的位置(本大题共10个小题,每小题3分,共30分)1.(3分)(2014•广安)﹣的相反数是()A.B.﹣C.5D.﹣5考点:相反数.分析:求一个数的相反数,即在这个数的前面加负号.解答:解:﹣的相反数是.故选A.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号.一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.学生易把相反数的意义与倒数的意义混淆.2.(3分)(2014•广安)下列运算正确的是()A.(﹣a2)•a3=﹣a6B.x6÷x3=x2C.|﹣3|=﹣3D.(a2)3=a6考点:同底数幂的除法;实数的性质;同底数幂的乘法;幂的乘方与积的乘方.分析:分别进行积的乘方和幂的乘方、同底数幂的乘法、同底数幂的除法、绝对值的化简等运算,然后选择正确答案.解答:解:A、(﹣a2)•a3=﹣a5,故本选项错误;B、x6÷x3=x3,故本选项错误;C、|﹣3|=3﹣,故本选项错误;D、(a2)3=a6,故本选项正确.故选D.点评:本题考查了积的乘方和幂的乘方、同底数幂的乘法、同底数幂的除法、绝对值的化简等知识,掌握运算法则是解答本题的关键.3.(3分)(2014•广安)参加广安市2014年高中阶段教育学生招生考试的学生大约有4.3万人,将4.3万人用科学记数法表示应为()A.4.3×104人B.43×105人C.0.43×105人D.4.3×105人考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:4.3万=43000=4.3×104,故选:A.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2014•广安)我市某校举办“行为规范在身边”演讲比赛中,7位评委给其中一名选手的评分(单位:分)分别为:9.25,9.82,9.45,9.63,9.57,9.35,9.78.则这组数据的中位数和平均数分别是()A.9.63和9.54B.9.57和9.55C.9.63和9.56D.9.57和9.57考点:中位数;算术平均数.分析:根据中位数和平均数的概念求解.解答:解:这组数据按照从小到大的顺序排列为:9.25,9.35,9.45,9.57,9.63,9.78,9.82,则中位数为:9.57,平均数为:=9.55.故选B.点评:本题考查了中位数和平均数的知识,平均数是指在一组数据中所有数据之和再除以数据的个数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.(3分)(2014•广安)要使二次根式在实数范围内有意义,则x的取值范围是()A.x=B.x≠C.x≥D.x≤考点:二次根式有意义的条件.分析:根据二次根式有意义的条件可得5x﹣3≥0,再解不等式即可.解答:解:由题意得:5x﹣3≥0,解得:x≥,故选:C.点评:此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.6.(3分)(2014•广安)下列说法正确的是()A.为了了解全国中学生每天体育锻炼的时间,应采用普查的方式B.若甲组数据的方差S=0.03,乙组数据的方差是S=0.2,则乙组数据比甲组数据稳定C.广安市明天一定会下雨D.一组数据4、5、6、5、2、8的众数是5考点:全面调查与抽样调查;众数;方差;随机事件分析:A.根据普查的意义判断即可;B.方差越小越稳定;C.广安市明天会不会下雨不确定;D.根据众数的定义判断即可.解答:解:A.了解全国中学生每天体育锻炼的时间,由于人数较多,应当采用抽样调查,故本选项错误;B.甲的方差小于乙的方差所以甲组数据比乙组数据稳定,故本选项错误;C.广安市明天一定会下雨,不正确;D.数据4、5、6、5、2、8中5的个数最多,所以众数为5,故本项正确.故选:D.点评:本题主要考查了全面调查、方差、众数的意义.7.(3分)(2014•广安)如图所示的几何体的俯视图是()A.B.C.D.考点:简单几何体的三视图.分析:找到从上面看所得到的图形即可.解答:解:该几何体的俯视图为:.故选D.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.8.(3分)(2014•广安)如图,一次函数y1=k1x+b(k1、b为常数,且k1≠0)的图象与反比例函数y2=(k2为常数,且k2≠0)的图象都经过点A(2,3).则当x>2时,y1与y2的大小关系为()A.y1>y2B.y1=y2C.y1<y2D.以上说法都不对考点:反比例函数与一次函数的交点问题.分析:根据两函数的交点坐标,结合图象得出答案即可.解答:解:∵两图象都经过点A(2,3),∴根据图象当x>2时,y1>y2,故选A.点评:本题考查了一次函数和反比例函数的交点问题的应用,主要考查学生的理解能力和观察图象的能力,题目比较典型,难度不大.9.(3分)(2014•广安)如图,在△ABC中,AC=BC,有一动点P从点A出发,沿A→C→B→A匀速运动.则CP的长度s与时间t之间的函数关系用图象描述大致是()A.B.C.D.考点:动点问题的函数图象分析:该题属于分段函数:点P在边AC上时,s随t的增大而减小;当点P在边BC上时,s随t的增大而增大;当点P在线段BD上时,s随t的增大而减小;当点P在线段AD上时,s随t的增大而增大.解答:解:如图,过点C作CD⊥AB于点D.∵在△ABC中,AC=BC,∴AD=BD.①点P在边AC上时,s随t的增大而减小.故A、B错误;②当点P在边BC上时,s随t的增大而增大;③当点P在线段BD上时,s随t的增大而减小,点P与点D重合时,s最小,但是不等于零.故C错误;④当点P在线段AD上时,s随t的增大而增大.故D正确.故选:D.点评:本题考查了动点问题的函数图象.用图象解决问题时,要理清图象的含义即会识图.10.(3分)(2014•广安)如图,矩形ABCD的长为6,宽为3,点O1为矩形的中心,⊙O2的半径为1,O1O2⊥AB于点P,O1O2=6.若⊙O2绕点P按顺时针方向旋转360°,在旋转过程中,⊙O2与矩形的边只有一个公共点的情况一共出现()A.3次B.4次C.5次D.6次考点:直线与圆的位置关系.分析:根据题意作出图形,直接写出答案即可.解答:解:如图:,⊙O2与矩形的边只有一个公共点的情况一共出现4次,故选B.点评:本题考查了直线与圆的位置关系,解题的关键是了解当圆与直线相切时,点到圆心的距离等于圆的半径.二、填空题:请把最简答案直接填写在题目后的横线上(本大题共6个小题,每小题3分,共18分)11.(3分)(2014•广安)直线y=3x+2沿y轴向下平移5个单位,则平移后直线与y轴的交点坐标为(0,﹣3).考点:一次函数图象与几何变换.分析:先由直线直线y=3x+2沿y轴向下平移5个单位可得y=3x﹣3,再根据一次函数y=kx+b与y轴交点为(0,b)可得答案.解答:解:直线直线y=3x+2沿y轴向下平移5个单位可得y=3x+2﹣5,即y=3x﹣3,则平移后直线与y轴的交点坐标为:(0,﹣3).故答案为:(0,﹣3).点评:此题主要考查了一次函数图象的几何变换,关键是掌握直线y=kx+b沿y轴平移后,函数解析式的k值不变,b值上移加、下移减.12.(3分)(2014•广安)分解因式:my2﹣9m=m(y+3)(y﹣3).考点:提公因式法与公式法的综合运用.分析:首先提取公因式m,进而利用平方差公式进行分解即可.解答:解:my2﹣9m=m(y2﹣9)=m(y+3)(y﹣3).故答案为:m(y+3)(y﹣3).点评:此题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差公式是解题关键.13.(3分)(2014•广安)化简(1﹣)÷的结果是x﹣1.考点:分式的混合运算分析:根据分式混合运算的法则进行计算即可.解答:解:原式=•=x﹣1.故答案为:x﹣1.点评:本题考查的是分式的混合运算,熟知分式混合运算的法则是解答此题的关键14.(3分)(2014•广安)若∠α的补角为76°28′,则∠α=103°32′.考点:余角和补角;度分秒的换算.分析:根据互为补角的概念可得出∠α=180°﹣76°28′.解答:解:∵∠α的补角为76°28′,∴∠α=180°﹣76°28′=103°32′,故答案为103°32′.点评:本题考查了余角和补角以及度分秒的换算,是基础题,要熟练掌握.15.(3分)(2014•广安)一个多边形的内角和比四边形内角和的3倍多180°,这个多边形的边数是9.考点:多边形内角与外角分析:多边形的外角和是360度,多边形的外角和是内角和的3倍多180°,则多边形的内角和是360×3+180°度,再由多边形的内角和列方程解答即可.解答:解:设这个多边形的边数是n,由题意得,(n﹣2)×180°=360°×3+180°解得n=9.故答案为:9.点评:本题主要考查了多边形的内角和定理与外角和定理,熟练掌握定理是解题的关键.16.(3分)(2014•广安)如图,在直角梯形ABCD中,∠ABC=90°,上底AD为,以对角线BD为直径的⊙O与CD切于点D,与BC交于点E,且∠ABD为30°.则图中阴影部分的面积为﹣π(不取近似值).考点:切线的性质;直角梯形;扇形面积的计算.分析:连接OE,根据∠ABC=90°,AD=,∠ABD为30°,可得出AB与BD,可证明△OBE为等边三角形,即可得出∠C=30°.阴影部分的面积为直角梯形ABCD的面积﹣三角形ABD的面积﹣三角形OBE的面积﹣扇形ODE的面积.解答:解:连接OE,过点O作OF⊥BE于点F.∵∠ABC=90°,AD=,∠ABD为30°,∴BD=2,∴AB=3,∵OB=OE,∴∠DBC=60°,∴OF=,∵CD为⊙O的切线,∴∠BDC=90°,∴∠C=30°,∴BC=4,S阴影=S梯形ABCD﹣S△ABD﹣S△OBE﹣S扇形ODE=﹣﹣﹣=﹣﹣﹣π=﹣π.故答案为﹣π.点评:本题考查了切线的性质、直角梯形以及扇形面积的计算,要熟悉扇形的面积公式.三、解答题(本大题共4个小题,第17小题5分,第18、19、20小题各6分,共23分)17.(5分)(2014•广安)+(﹣)﹣1+(﹣5)0﹣cos30°.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值专题:计算题.分析:原式第一项利用平方根定义化简,第二项利用负指数幂法则计算,第三项利用零指数幂法则计算,最后一项利用特殊角的三角函数值计算即可得到结果.解答:解:原式=4﹣2+1﹣×=4﹣2+1﹣=.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(6分)(2014•广安)解不等式组,并写出不等式组的整数解.考点:解一元一次不等式组;一元一次不等式组的整数解.分析:首先分别解出两个不等式的解集,再根据大小小大中间找确定不等式组的解集,然后再根据x的取值范围找出整数解.解答:解:,解①得:x≤4,解②得:x>2,不等式组的解集为:2<x≤4.则不等式组的整数解:3,4.点评:此题主要考查了解一元一次不等式组,以及不等式组的整数解,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.19.(6分)(2014•广安)如图,在正方形ABCD中,P是对角线AC上的一点,连接BP、DP,延长BC到E,使PB=PE.求证:∠PDC=∠PEC.考点:全等三角形的判定与性质;正方形的性质.专题:证明题.分析:根据正方形的四条边都相等可得BC=CD,对角线平分一组对角可得∠BCP=∠DCP
本文标题:2014广安中考数学试题(解析版)
链接地址:https://www.777doc.com/doc-2937287 .html