您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 2014高考调研理科数学课时作业讲解_课时作业86
课时作业(八十六)1.某单位有职工160人,其中业务人员120人,管理人员24人,后勤服务人员16人.为了解职工的某种情况,要从中抽取一个样本容量为20的样本,记作①.从某中学高三年级的18名体育特长生中选出5人调查学习负担情况,记作②.那么完成上述两项调查应采用的抽样方法分别是()A.①用随机抽样法,②用系统抽样法B.①用分层抽样法,②用随机抽样法C.①用系统抽样法,②用分层抽样法D.①用分层抽样法,②有系统抽样法答案B解析当总体中的个体数较多而差异又不大时可采用系统抽样法;当总体中的个体差异较大时,宜采用分层抽样法;当总体中的个体数较少时,宜采用简单随机抽样法.依据题意,第①项调查应采用分层抽样法,第②项调查应采用简单随机抽样法.故选B.2.某工厂生产A、B、C三种不同型号的产品,产品的数量之比依次为3∶4∶7,现在用分层抽样的方法抽出容量为n的样本,样本中A型号产品有15件,那么样本容量n为()A.50B.60C.70D.80答案C解析由分层抽样方法得33+4+7×n=15,解之得n=70.故选C.3.某高中在校学生2000人,高一年级与高二年级人数相同并都比高三年级多1人,为了响应“阳光体育运动”号召,学校举行了“元旦”跑步和登山比赛活动.每个人都参加而且只参与了其中一项比赛,各年级参与比赛人数情况如下表:高一级高二级高三级跑步abc登山xyz其中a∶b∶c=2∶3∶5,全校参与登山的人数占总人数的25,为了了解学生对本次活动的满意程度,从中抽取了一个200人的样本进行调查,则高二级参与跑步的学生中应抽取()A.36人B.60人C.24人D.30人答案A解析∵登山占总数的25,故跑步的占总数的35,又跑步中高二级占32+3+5=310.∴高二级跑步的占总人数的35×310=950.由950=x200,得x=36,故选A.4.某全日制大学共有学生5600人,其中专科生有1300、本科生有3000人、研究生有1300人,现采用分层抽样的方法调查学生利用因特网查找学生资料的情况,抽取的样本为280人,则应在专科生,本科生与研究生这三类学生中分别抽取()A.65人,150人,65人B.30人,150人,100人C.93人,94人,93人D.80人,120人,80人答案A解析设应在专科生,本科生与研究生这三类学生中分别抽取x人,y人,z人,则5600280=1300x=3000y=1300z,所以x=z=65,y=150,所以应在专科生,本科生与研究生这三类学生中分别抽取65人,150人,65人.5.某中学开学后从高一年级的学生中随机抽取90名学生进行家庭情况调查,经过一段时间后再次从这个年级随机抽取100名学生进行学情调查,发现有20名同学上次被抽到过,估计这个学校高一年级的学生人数为()A.180B.400C.450D.2000答案C解析90x=20100,∴x=450.故选C.6.某初级中学有学生270人,其中七年级108人,八、九年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按七、八、九年级依次统一编号为1、2、…、270;使用系统抽样时,将学生统一随机编号为1、2、…、270,并将整个编号依次分为10段.如果抽得号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,190,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270;关于上述样本的下列结论中,正确的是()A.②、③都不能为系统抽样B.②、④都不能为分层抽样C.①、④都可能为系统抽样D.①、③都可能为分层抽样答案D解析对于系统抽样,应在1~27、28~54、55~81、82~108、109~135、136~162、163~189、190~216、217~243、244~270中各抽取1个号;对于分层抽样,应在1~108中抽取4个号,109~189中抽取3个号,190~270中抽取3个号.7.衡水中学为了提高学生的数学素养,开设了《数学史选讲》、《对称与群》、《球面上的几何》三门选修课程,供高二学生选修,已知高二年级共有学生600人,他们每人都参加且只参加一门课程的选修.为了了解学生对选修课的学习情况,现用分层抽样的方法从中抽取30名学生进行座谈.据统计,参加《数学史选讲》、《对称与群》、《球面上的几何》的人数依次组成一个公差为-40的等差数列,则应抽取参加《数学史选讲》的学生的人数为()A.8B.10C.12D.16答案C解析根据题意可得,参加《数学史选讲》的学生人数为240人.抽取比例是30600=120,故应该抽取240×120=12人.8.(2013·湖南长沙高三模拟)某校高三一班有学生54人,二班有学生42人,现在要用分层抽样的方法从两个班抽出16人参加军训表演,则一班和二班分别被抽取的人数是()A.8,8B.10,6C.9,7D.12,4答案C解析一班被抽取的人数是16×5496=9;二班被抽取的人数是16×4296=7,故选C.9.(2013·西城区)某校要从高一、高二、高三共2012名学生中选取50名组成志愿团,若采用下面的方法选取,先用简单随机抽样的方法从2012人中剔除12人,剩下的2000人再按分层抽样的方法进行,则每人入选的概率()A.都相等且为502012B.都相等且为140C.不会相等D.均不相等答案A解析整个抽样过程均为等可能抽样,故每人入选的概率相等且均为502012.10.(2013·衡水调研卷)某班共有学生54人,学号分别为1~54号,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号、29号、42号的同学在样本中,那么样本中还有一个同学的学号是()A.10B.16C.53D.32答案B解析该系统抽样的抽样间距为42-29=13,故另一同学的学号为3+13=16.11.(2013·浙江宁波一模)调查某高中1000名学生的身高情况得下表,已知从这批学生随机抽取1名学生,抽到偏矮男生的概率为0.12,若用分层抽样的方法,从这些学生随机抽取50名,问应在偏高学生中抽________名.偏矮正常偏高女生/人100273y男生/人x287z答案11解析由题意可知x=1000×0.12=120,所以y+z=220.所以偏高学生占学生总数的比例为2201000=1150,所以抽50名应抽偏高学生50×1150=11(人).12.(2013·皖南八校联考)某班级有50名学生,现要采取系统抽样的方法在这50名学生中抽出10名学生,将这50名学生随机编号1~50号,并分组,第一组1~5号,第二组6~10号……第十组46~50号,若在第三组中抽得号码为12的学生,则在第八组中抽得号码为________的学生.答案37解析组距为5,(8-3)×5+12=37.13.(2012·天津理)某地区有小学150所,中学75所,大学25所.现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取________所学校,中学中抽取________所学校.答案189解析根据分层抽样的特点求解.从小学中抽取30×150150+75+25=18所学校;从中学中抽取30×75150+75+25=9所学校.14.一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样的方法抽出100人作进一步调查,则在[2500,3000)月收入段应抽出________人.答案25解析由图可得月收入在[2500,3000)的频率为0.0005×500=0.25,所以[2500,3000)月收入段应抽出100×0.25=25(人).15.中央电视台在因特网上就观众对2013年春节晚会这一节目的喜爱程度进行调查,参加调查的总人数为12000人,其中持各种态度的人数如表所示:很喜爱喜爱一般不喜爱2435460039261039电视台为进一步了解观众的具体想法和意见,打算从中抽取60人进行更为详细的调查,其中持“喜爱”态度的观众应抽取多少人?答案23人解析由于样本容量与总体容量的比为6012000=1200,∴应抽取“喜爱”态度的观众人数为4600×1200=23(人).16.衡水统计局就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在[1000,1500)).(1)求居民月收入在[3000,3500)的频率;(2)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10000人中分层抽样方法抽出100人作进一步分析,则月收入在[2500,3000)的这段应抽多少人?解析(1)月收入在[3000,3500)的频率为0.0003×(3500-3000)=0.15.(2)居民月收入在[2500,3000)的频率为0.0005×(3000-2500)=0.25,所以10000人中月收入在[2500,3000)的人数为0.25×10000=2500(人),再从10000人中分层抽样方法抽出100人,则月收入在[2500,3000)的这段应抽取100×250010000=25人.1.某班甲、乙两名学同参加100米达标训练,在相同条件下两人10次训练的成绩(单位:秒)如下:12345678910甲11.612.213.213.914.011.513.114.511.714.3乙12.313.314.311.712.012.813.213.814.112.5(1)请作出样本数据的茎叶图;如果从甲、乙两名同学中选一名参加学校的100米比赛,从成绩的稳定性方面考虑,选派谁参加比赛更好,并说明理由(不用计算,可通过统计图直接回答结论).(2)从甲、乙两人的10次训练成绩中各随机抽取一次,求抽取的成绩中至少有一个比12.8秒差的概率.(3)经过对甲、乙两位同学的多次成绩的统计,甲、乙的成绩都均匀分布在[11.5,14.5]之间,现甲、乙比赛一次,求甲、乙成绩之差的绝对值小于0.8秒的概率.解析(1)茎叶图从统计图中可以看出,乙的成绩较为集中,差异程度较小,应选派乙同学代表班级参加比赛较好.(2)设事件A为:甲的成绩低于12.8,事件B为:乙的成绩低于12.8,则甲、乙两人成绩至少有一个低于12.8秒的概率为P=1-P(A)(B)=1-410×510=45.(3)设甲同学的成绩为x,乙同学的成绩为y,则|x-y|0.8,得-0.8+xy0.8+x.如图阴影部分面积即为3×3-2.2×2.2=4.16,则P(|x-y|0.8)=P(-0.8+xy0.8+x)=4.163×3=104225.
本文标题:2014高考调研理科数学课时作业讲解_课时作业86
链接地址:https://www.777doc.com/doc-2942399 .html