您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 2016年高考文科数学试题全国卷3(含答案全解析)
第1页共11页2016年全国高考文科数学试题(全国卷3)第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{0,2,4,6,8,10},{4,8}AB,则BCA=(A){48},(B){026},,(C){02610},,,(D){0246810},,,,,(2)若43iz,则||zz=(A)1(B)1(C)43+i55(D)43i55(3)已知向量BA=(12,32),BC=(32,12),则∠ABC=(A)30°(B)45°(C)60°(D)120°(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃.下面叙述不正确的是(A)各月的平均最低气温都在0℃以上(B)七月的平均温差比一月的平均温差大(C)三月和十一月的平均最高气温基本相同(D)平均最高气温高于20℃的月份有5个(5)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是(A)815(B)18(C)115(D)130(6)若1tan3,则cos2θ=(A)45(B)15(C)15(D)45(7)已知31323425,3,2cba则(A)cab(B)cba(C)acb(D)bac(8)执行右面的程序框图,如果输入的a=4,b=6,那么输出的n=第2页共11页(A)3(B)4(C)5(D)6(9)在△ABC中,BCB,4边上的高等于BC31,则Asin=(A)310(B)1010(C)55(D)31010(10)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A)18365(B)54185(C)90(D)81(11)在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是(A)4π(B)9π2(C)6π(D)32π3(12)已知O为坐标原点,F是椭圆C:22221(0)xyabab的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为(A)13(B)12(C)23(D)34第II卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分(13)设yx,满足约束条件210,210,1,xyxyx则532yxz的最小值为______.(14)函数xxycossin的图像可由函数xysin2的图像至少向右平移______个单位长度得到.(15)已知直线063:yxl与圆1222yx交于A、B两点,过A、B分别作l的垂线与x轴交于C、D两点,则|CD|=______.第3页共11页(16)已知f(x)为偶函数,当0x时,1()xfxex,则曲线y=f(x)在点(1,2)处的切线方程式_________.三.解答题:解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)已知各项都为正数的数列na满足11a,211(21)20nnnnaaaa.(I)求23,aa;(II)求na的通项公式.(18)(本小题满分12分)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码1–7分别对应年份2008–2014.(Ⅰ)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;(Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.附注:参考数据:719.32iiy,7140.17iiity,721()0.55iiyy,≈2.646.参考公式:12211()()()(yy)niiinniiiittyyrtt,回归方程yabt中斜率和截距的最小二乘估计公式分别为:121()()()niiiniittyybtt,=.aybt(19)(本小题满分12分)第4页共11页如图,四棱锥P-ABCD中,PA⊥地面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(I)证明MN∥平面PAB;(II)求四面体N-BCM的体积.(20)(本小题满分12分)已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B两点,交C的准线于P,Q两点.(Ⅰ)若F在线段AB上,R是PQ的中点,证明AR∥FQ;(Ⅱ)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.(21)(本小题满分12分)设函数()ln1fxxx.(I)讨论()fx的单调性;(II)证明当(1,)x时,11lnxxx;(III)设1c,证明当(0,1)x时,1(1)xcxc.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号(22)(本小题满分10分)选修4—1:几何证明选讲如图,⊙O中的中点为P,弦PC,PD分别交AB于E,F两点。(Ⅰ)若∠PFB=2∠PCD,求∠PCD的大小;(Ⅱ)若EC的垂直平分线与FD的垂直平分线交于点G,证明OG⊥CD。第5页共11页(23)(本小题满分10分)选修4—4:坐标系与参数方程在直线坐标系xoy中,曲线C1的参数方程为(为参数)。以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin()=.(I)写出C1的普通方程和C2的直角坐标方程;(II)设点P在C1上,点Q在C2上,求∣PQ∣的最小值及此时P的直角坐标.(24)(本小题满分10分),选修4—5:不等式选讲已知函数f(x)=∣2x-a∣+a.(I)当a=2时,求不等式f(x)≤6的解集;(II)设函数g(x)=∣2x-1∣.当x∈R时,f(x)+g(x)≥3,求a的取值范围。2016年全国高考文科数学试题解析(全国卷3)一、选择题:(1)【答案】C(2)【答案】D(3)【答案】A(4)【答案】D(5)【答案】C(6)【答案】D(7)【答案】A(8)【答案】B(9)【答案】D(10)【答案】B(11)【答案】B(12)【答案】A二、填空题:(13)【答案】-10(14)【答案】3(15)【答案】3(16)【答案】y2x.三.解答题:第6页共11页(17)【答案】(1)11,24;(2)112nna.(18)【答案】(1)可用线性回归模型拟合变量y与t的关系.(2)我们可以预测2016年我国生活垃圾无害化处理1.83亿吨.【解析】试题分析:(1)变量y与t的相关系数77771111777722221111()()7()()7()()iiiiiiiiiiiiiiiiiittyytytyrttyyttyy,又7128iit,719.32iiy,7140.17iiity,721()275.292iitt,721()0.55iiyy,所以740.17289.320.9975.2920.55r,故可用线性回归模型拟合变量y与t的关系.(2)4t,y7117iiy,所以7172211740.17749.327ˆ0.10287iiiiitytybtt,1ˆˆ9.320.1040.937aybx,(19)【答案】(I)见解析;(II)453。【解析】试题分析:(1)取PB中点Q,连接AQ、NQ,第7页共11页∵N是PC中点,NQ//BC,且NQ=12BC,又22313342AMADBCBC,且//AMBC,∴//QNAM,且QNAM.∴AQNM是平行四边形.∴//MNAQ.又MN平面PAB,AQ平面PAB,∴//MN平面PAB.(2)由(1)//QN平面ABCD.∴1122NBCMQBCMPBCMPBCAVVVV.∴111454252363NBCMABCVPAS.(20)【答案】(I)见解析;(II)21yx【解析】试题分析:(Ⅰ)连接RF,PF,由AP=AF,BQ=BF及AP//BQ,第8页共11页∴AR//FQ.(Ⅱ)设1122(,),(,)AxyBxy,1(,0)2F,准线为12x,121122PQFSPQyy,设直线AB与x轴交点为N,1212ABFSFNyy,∵2PQFABFSS,∴21FN,∴1Nx,即(1,0)N.设AB中点为(,)Mxy,由21122222yxyx得2212122()yyxx,又12121yyyxxx,∴11yxy,即21yx.∴AB中点轨迹方程为21yx.(21)【答案】(I);(II)(III)见解析。【解析】第9页共11页第10页共11页请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号(22)【答案】(I)60°(II)见解析【解析】试题分析:(23)【答案】31()40;()(,).22IxyIIP【解析】试题分析:第11页共11页(24)【答案】(I);(II)a2
本文标题:2016年高考文科数学试题全国卷3(含答案全解析)
链接地址:https://www.777doc.com/doc-2943438 .html