您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2015年广东省东莞市中考数学模拟试卷(七)
第1页(共6页)2015年广东省东莞市中考数学模拟试卷(七)一、选择题(本大题共10小题,每小题3分,满分30分)1.(3分)(2012•安徽)下面的数中,与﹣3的和为0的是()A.3B.﹣3C.D.2.(3分)(2012•安徽)计算(﹣2x2)3的结果是()A.﹣2x5B.﹣8x6C.﹣2x6D.﹣8x53.(3分)(2012•安徽)给甲乙丙三人打电话,若打电话的顺序是任意的,则第一个打电话给甲的概率为()A.B.C.D.4.(3分)(2006•临安市)某青年排球队12名队员的年龄情况如表:年龄1819202122人数14322则这个队队员年龄的众数和中位数是()A.19,20B.19,19C.19,20.5D.20,195.(3分)(2015•广东模拟)地球与月球的距离约为384000千米,这个数据可用科学记数法表示为()A.3.84×104千米B.3.84×105千米C.3.84×106千米D.38.4×104千米6.(3分)(2011•内江)如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°,那么∠2的度数是()A.32°B.58°C.68°D.60°7.(3分)(2012•安徽)为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为()第2页(共6页)A.2a2B.3a2C.4a2D.5a28.(3分)(2014•南通)化简的结果是(A.x+1B.x﹣1C.﹣xD.x9.(3分)(2012•安徽)如图,A点在半径为2的⊙O上,过线段OA上的一点P作直线l,与⊙O过A点的切线交于点B,且∠APB=60°,设OP=x,则△PAB的面积y关于x的函数图象大致是()A.B.C.D.10.(3分)(2012•包头)如图,过▱ABCD的对角线BD上一点M分别作平行四边形两边的平行线EF与GH,那么图中的▱AEMG的面积S1与▱HCFM的面积S2的大小关系是()A.S1>S2B.S1<S2C.S1=S2D.2S1=S2二、填空题(本大题共6小题,每小题4分,满分24分)11.(4分)(2015•东莞模拟)到原点距离等于的实数为.12.(4分)(2011•东营)分解因式:x2y﹣2xy+y=.13.(4分)(2015•东莞模拟)一个角的余角比这个角的补角的一半小40°,则这个角为度.14.(4分)(2015•东莞模拟)将正方形与直角三角形纸片按如图所示方式叠放在一起,已知正方形的边长为20cm,点O为正方形的中心,AB=5cm,则CD的长为cm.第3页(共6页)15.(4分)(2005•四川)如果记y==f(x),并且f(1)表示当x=1时y的值,即f(1)==;f()表示当x=时y的值,即f()==,那么f(1)+f(2)+f()+f(3)+f()+…+f(n)+f()=.(结果用含n的代数式表示,n为正整数).16.(4分)(2015•东莞模拟)如图是圆心角为30°,半径分别是1、3、5、7、…的扇形组成的图形,阴影部分的面积依次记为S1、S2、S3、…,则Sn=.(结果保留π)三、解答题(本大题共3小题,每小题6分,满分18分)17.(6分)(2015•东莞模拟)﹣2cos45°﹣(2014﹣π)0﹣()﹣1.18.(6分)(2012•珠海)如图,在△ABC中,AB=AC,AD是高,AM是△ABC外角∠CAE的平分线.(1)用尺规作图方法,作∠ADC的平分线DN;(保留作图痕迹,不写作法和证明)(2)设DN与AM交于点F,判断△ADF的形状.(只写结果)第4页(共6页)19.(6分)(2015•东莞模拟)一个工程队修一条3000米的公路,由于施工中途增加了人员,实际每天修路比原来多50%,结果提前2天完成,求实际每天修路多少?四、解答题(本大题共3小题,每小题7分,满分21分)20.(7分)(2012•安徽)在由m×n(m×n>1)个小正方形组成的矩形网格中,研究它的一条对角线所穿过的小正方形个数f,(1)当m、n互质(m、n除1外无其他公因数)时,观察下列图形并完成下表:mnm+nf123213432354257347猜想:当m、n互质时,在m×n的矩形网格中,一条对角线所穿过的小正方形的个数f与m、n的关系式是(不需要证明);(2)当m、n不互质时,请画图验证你猜想的关系式是否依然成立.21.(7分)(2009•宝安区二模)如图,AB是△ABC外接圆⊙O的直径,D是AB延长线上一点,且BD=AB,∠A=30°,CE⊥AB于E,过C的直径交⊙O于点F,连接CD、BF、EF.(1)求证:CD是⊙O的切线;(2)求:tan∠BFE的值.第5页(共6页)22.(7分)(2015•东莞模拟)如图,△OBD中,OD=BD,△OBD绕点O逆时针旋转一定角度后得到△OAC,此时B,D,C三点正好在一条直线上,且点D是BC的中点.(1)求∠COD度数;(2)求证:四边形ODAC是菱形.五、解答题(本大题共3小题,每小题9分,满分27分)23.(9分)(2014•从化市一模)为促进资源节约型和环境友好型社会建设,根据国家发改委实施“阶梯电价”的有关文件要求,广州市决定从2012年7月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准(非夏季标准)见下表:一户居民一个月用电量的范围电费价格(单位:元/千瓦时)不超过200千瓦时的部分0.61超过200千瓦时,但不超过400千瓦时的部分0.66超过400千瓦时的部分0.91(1)如果小明家3月用电120度,则需交电费多少元?(2)求“超过200千瓦时,但不超过400千瓦时的部分”每月电费y(元)与用电量x(千瓦时)之间的函数关系式;(3)试行“阶梯电价”收费以后,小明家用电量多少千瓦时,其当月的平均电价每千瓦时不超过0.71元?第6页(共6页)24.(9分)(2011•岳阳)如图1,将菱形纸片AB(E)CD(F)沿对角线BD(EF)剪开,得到△ABD和△ECF,固定△ABD,并把△ABD与△ECF叠放在一起.(1)操作:如图2,将△ECF的顶点F固定在△ABD的BD边上的中点处,△ECF绕点F在BD边上方左右旋转,设旋转时FC交BA于点H(H点不与B点重合),FE交DA于点G(G点不与D点重合).求证:BH•GD=BF2(2)操作:如图3,△ECF的顶点F在△ABD的BD边上滑动(F点不与B、D点重合),且CF始终经过点A,过点A作AG∥CE,交FE于点G,连接DG.探究:FD+DG=.请予证明.25.(9分)(2007•金华)如图1,在平面直角坐标系中,已知点A(0,4),点B在x正半轴上,且∠ABO=30度.动点P在线段AB上从点A向点B以每秒个单位的速度运动,设运动时间为t秒.在x轴上取两点M,N作等边△PMN.(1)求直线AB的解析式;(2)求等边△PMN的边长(用t的代数式表示),并求出当等边△PMN的顶点M运动到与原点O重合时t的值;(3)如果取OB的中点D,以OD为边在Rt△AOB内部作如图2所示的矩形ODCE,点C在线段AB上.设等边△PMN和矩形ODCE重叠部分的面积为S,请求出当0≤t≤2秒时S与t的函数关系式,并求出S的最大值.
本文标题:2015年广东省东莞市中考数学模拟试卷(七)
链接地址:https://www.777doc.com/doc-2951659 .html