您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 2013高中数学1-1第1课时数列的概念同步导学案北师大版必修5
1第一章数列本章概述●课程目标1.双基目标(1)通过日常生活中的实例,了解数列的概念和几种简单的表示方法(列表、图像、通项公式),了解数列是一种特殊的函数;(2)通过实例,理解等差数列、等比数列的概念;(3)探索并掌握等差数列、等比数列的通项公式与前n项和的公式.在公式的推导过程中,通过观察、实验、猜想、归纳、类比、抽象、概括等过程,经过反思、交流,培养学生观察、分析、探索、归纳的能力,体会由特殊到一般,由一般到特殊的思想方法;(4)体会等差数列与一次函数,等比数列与指数函数的关系;(5)能在具体问题情境中,发现等差、等比数列模型,并能运用有关知识解决相应的问题.2.情感目标(1)通过本章学习提高观察、分析、归纳、猜想的能力.(2)“兴趣是最好的老师”,数列中的奥妙与趣味定会激发你去学习,去思考,去探索.(3)通过建立数列模型,以及应用数列模型解决实际问题的过程,培养学生提出、分析、解决问题的能力,提高学生的基本数学素养,为后续的学习奠定良好的数学基础.●重点难点重点:等差数列与等比数列的通项公式.前n项和公式及其应用,等差数列的性质及判定,等比数列的性质及应用.难点:等差数列、等比数列的性质及应用.●方法探究1.结合实例,通过观察、分析、归纳、猜想,让学生经历数列概念、公式、性质的发现和推证过程,发现数列的递推公式,体会递推方法是给出数列和研究有关数列问题的重要方法.2.借助类比、对比,体会数列是一种特殊的函数.经历类比函数研究数列,使用函数的思想方法解决数列问题,对比等差数列研究等比数列,对比一次函数、二次函数、指数函数研究等差数列、等比数列的过程.3.引导学生收集有关资料,经历发现等差(等比)关系,建立等差数列和等比数列的模型的过程,探索它们的概念、通项公式、前n项和公式及其性质,体会它们的广泛应用.4.帮助学生不断发现、梳理和体验本章蕴含着的丰富的数学思想方法,设计适当的训练,进一步感受“观察、试验、归纳、猜想、证明”的方法和模型化思想,函数与方程、转化与化归、分类讨论等数学思想,体验叠加、累乘、迭代、倒序相加、乘以公比错位相减等具体方法.本章注意问题:(1)多结合实例,通过实例去理解数列的有关概念.数列与函数密切相关,多角度比较两者之间的异同,加深对两方面内容的理解.在解题或复习时,应自觉地运用函数的思想方法去思考和解决数列问题,特别是对等差数列或等比数列的问题.运用函数思想方法以及利用它所得到的许多结论,不仅可以深化对数列知识的理解,而且可使这类问题的解答更为快速、合理.(2)善于对比学习.学习等差数列后,再学等比数列时,可以把等差数列作为模型,从等差数列研究过的问题入手,再探求出等比数列的相应问题,两相对照,可以发现,在这两种数列的定义、一般形式、通项2形式、中项及性质中,用了一些相类似的语句和公式形式,但内容却不相同,之所以有这样的区别,原因在于“差”与“比”不同.通过对比学习,加深了对两种特殊数列本质的理解,会收到事半功倍的效果.(3)要重视数学思想方法的指导作用.本章蕴含丰富的数学观点、数学思想和方法,学习时应给予充分注意,解题时多考虑与之相联系的数学思想方法.§1数列第1课时数列的概念知能目标解读1.通过日常生活中的实例,了解数列的概念.2.掌握并理解数列、数列通项公式、递推公式的概念,能区分项和项数,并能根据数列的前几项写出它的一个通项公式,能根据数列的递推公式写出数列的前几项.3.了解数列的分类.4.了解数列的表示方法:列表法、图像法、通项公式法、递推公式法.重点难点点拨重点:了解数列的概念和简单表示方法,体会数列是反映自然规律的数学模型.难点:将数列作为一种函数去认识、了解.学习方法指导1.数列的定义(1)数列与数集是不同的,有序性是数列的基本属性.两组完全相同的数,由于排列的顺序不一样,就构成了不同的数列.因此用记号{an}表示数列时,不能把{an}看成一个集合,这是因为:①数列{an}中的项是有序的,而集合中的元素是无序的;②数列{an}中的数是可以重复的,即数列{an}中可以有相等的项,如1,1,2,2,…,但集合中的元素是互异的;③数列中的每一项都是数,而集合中的元素还可以代表除数以外的其他事物.(2)数列中的项的表示通常用英文字母加右下角标来表示,如an.其中的右下角标n表示项的位置序号.(3){an}与an是不同的概念,{an}表示数列a1,a2,a3,…,an,…,而an仅表示数列的第n项.2.数列的项与项数数列的项与它的项数是两个不同的概念,数列的项是指出现在这个数列中的某一个确定的数an,由于数列{an}的每一项的序号n与这一项an的对应关系可以看成序号集合到项的集合的函数,故数列中的项是一个函数值,即f(n).而项数是指这个数在数列中的位置序号,它是这个函数值f(n)对应的自变量的值,即n的集合是自然数集(或其子集).3.数列的分类判断一个数列是有穷数列还是无穷数列,应明确数列元素的构成以及影响构成元素的要素是有限还是无限的.4.通项公式(1)由于数列可看做是定义域为正整数集N+(或它的有限子集)的函数,数列中的各项为当自变量从小到大依次取值时,该函数所对应的一列函数值,所以数列的通项公式就是相应的函数解析式,项数n是相应的自变量.(2)如果知道了数列的通项公式,那么依次用1,2,3…去替代公式中的n就可以求出这个数列的各项;同时,用数列的通项公式也可以判断某数是否是某数列中的项,如果是的话,是第几项.3(3)如所有的函数关系不一定都有解析式一样,并不是所有的数列都有通项公式.如2的近似值,精确到1,0.1,0.01,0.001,0.0001,…所构成的数列1,1.4,1.41,1.414,1.4142,…就没有通项公式.注意:(1)一个数列的通项公式不唯一,可以有不同的形式,如an=(-1)n,可以写成an=(-1)n+2,还-1(n为奇数)可以写成an=,这些通项公式虽然形式上不同,但都表示同一数列.1(n为偶数),(2)有些数列,只给出它的前几项,并没有给出它的构成规律,那么仅由前面几项归纳出的数列通项公式并不唯一.如数列2,4,8,…根据有限项可以写成an=2n,也可以写成an=n2-n+2.只要符合已知前几项的构成规律即可.5.数列的递推公式(1)递推公式:如果已知数列的第1项(或前几项),且从第二项(或第二项以后的某一项)开始的任一项an与它的前一项an-1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式,递推公式也是给出数列的一种重要方法.(2)关于递推公式及应用需注意的几个问题:①通项公式和递推公式的区别通项公式直接反映an和n之间的关系,即an是n的函数,知道任意一个具体的n值,通过通项公式就可以求出该项的值an;而递推公式则是间接反映数列的式子,它是数列任意两个(或多个)相邻项之间的推导关系,不能由n直接得出an.②如何用递推公式给出一个数列用递推公式给出一个数列,必须给出①“基础”——数列{an}的第1项或前几项;②递推关系——数列{an}的任一项an与它的前一项an-1(或前几项)之间的关系,并且这个关系可以用一个公式来表示.注意:(1)并不是任何数列都能写出通项公式或递推公式.(2)以后学习或研究的数列往往以递推公式的方式给出定义或提供信息.(3)根据数列的递推公式可求数列中的任一项.例如:设数列{an}满足:a1=1,写出这个数的前5项.an=1+11na(n1)由题意可知a1=1,a2=1+11a=1+1=2,a3=1+21a=1+21=23,a4=1+31a=1+32=35,a5=1+41a=1+53=58.∴此数列前5项分别为:1,2,23,35,58.本例显示,递推公式和通项公式是反映数列构成规律的两个不同形式.递推公式反映的是相邻两项或几项之间的关系,它虽然揭示了一些数列的性质,但要了解数列的全貌,还需要进行计算,它的计算并不方便.而通项公式更注重整体性和统一性,利用通项公式可求出数列中的任意一项.4知能自主梳理1.数列的概念(1)数列:一般地,按照一定排列的一列数叫做数列.(2)项:数列中的每个数都叫做这个数列的.(3)数列的表示:数列的一般形式可以写成a1,a2,a3,…,an,…,简记为:.数列的第1项a1也称,an是数列的第n项,叫数列的.2.数列的分类项数有限的数列叫作,项数无限的数列叫作.3.数列的通项公式如果数列{an}的第n项an与n之间的函数关系可以用一个式子表示成an=f(n),那么式子叫作数列{an}的.4.数列的表示方法数列的表示方法一般有三种:、、.[答案]1.(1)次序(2)项(3){an}首项通项2.有穷数列无穷数列3.通项公式4.列表法图像法解析法思路方法技巧命题方向数列的概念[例1]下列各式哪些是数列?若是数列,哪些是有穷数列?哪些是无穷数列?(1){0,1,2,3,4};(2)0,1,2,3,4;(3)0,1,2,3,4…;(4)1,-1,1,-1,1,-1…;(5)6,6,6,6,6.[分析]此类问题的解决,必须要对数列及其有关概念理解认识到位,结合有关概念及定义来解决.[解析](1)是集合,不是数列;(2)、(3)、(4)、(5)是数列.其中(3)、(4)是无穷数列,(2)、(5)是有穷数列.变式应用1下列说法正确的是()A.数列2,3,4与数列4,3,2是同一数列B.数列1,2,3与数列1,2,3,…是同一数列C.1,4,2,31,5不是数列D.数列{2n-3}与-1,1,3,5,…不一定是同一数列[答案]D[解析]由数列的概念知A中的两个数列中的数虽然相同,但排列顺序不一样,B中的两个数列前者为有穷数列,后者为无穷数列,故A、B均不正确,C中显然是数列,D中数列{2n-3}是确定数列,通项公式为an=2n-3,但-1,1,3,5,…前4项符合an=2n-3,但后面的项不一定符合此规律,故不一定是同一数列.命题方向数列的通项公式5[例2]写出下面各数列的一个通项公式(1)3,5,9,17,33,…;(2)32,154,356,638,…;(3)21,2,29,8,225,…;(4)1122,3232,5342,7452,….[分析]通过观察,找出所给出的项与项数n关系的规律,再写通项公式.[解析](1)通过观察,发现各项分别减去1,变为2,4,8,16,32,…其通项公式为2n,故原数列的一个通项公式为an=2n+1.(2)通过观察,发现分子部分为正偶数数列{2n},分母各项分解因式:1·3,3·5,5·7,7·9,…为相邻奇数的乘积,即(2n-1)·(2n+1),故原数列的一个通项公式为an=)12)(12(2nnn.(3)由于在所给数列的项中,有的是分数,有的是整数,可将各项都统一成分数,再观察,在数列21,24,29,216,225,…中,分母为2,分子为n2,故an=22n.(4)数列中每一项由三部分组成,分母是从1开始的奇数列,其通项公式为2n-1;分子的前一部分是从2开始的自然数的平方,其通项公式为(n+1)2,分子的后一部分是减去一个自然数,其通项公式为n,综合得原数列的一个通项公式为an=12)1(2nnn=1212nnn.[说明]在根据数列的前n项求数列的一个通项公式时,要注意观察每一项的特点.解题的注意力应集中到寻求数列的项与项数的关系上来,观察这几项的表示式中哪些部分是变化的,哪些部分是不变的,再探索各项中变化部分与对应的项数之间的关系,从而归纳出项与项数关系的规律,写出通项公式.变式应用2写出数列的一个通项公式,使它的前几项分别是下列各数:(1)1,3,7,15,31,…;(2)1,21,31,41,…;(3)0.9,0.99,0.999,……,0.9999个项有第nn,….[解析](1)注意观察各项发现各项分别加上1,变为2,4,8,16,32,…,其通项公式为2n,故原数列通项公式为an=2n-1,n∈N+;(2)调整为11,21,31,41,它的前几项都是自然数的倒数,∴an=n1;
本文标题:2013高中数学1-1第1课时数列的概念同步导学案北师大版必修5
链接地址:https://www.777doc.com/doc-2955635 .html