您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 其它行业文档 > 第七章 常用分子生物学技术
第七章常用分子生物学技术第一节基因工程第二节PCR技术第一节基因工程Geneticengineering目的①分离获得某一感兴趣的基因或DNA②获得感兴趣基因的表达产物(蛋白质)基因工程(geneticengineering)——利用基因克隆方法获取目的基因并使克隆的基因表达为蛋白质或多肽产物或定向改造细胞乃至生物个体的特征及相关的工作称基因工程一、基本概念1、基因工程2、限制性核酸内切酶限制性核酸内切酶(restrictionendonuclease,RE)是识别DNA的特异序列,并在识别位点或其周围切割双链DNA的一类内切酶。GGATCCCCTAGGGCCTAGGATCCG+BamHⅠ3、基因载体为携带目的基因,实现其无性繁殖或表达有意义的蛋白质所采用的一些DNA分子。常用载体质粒DNA噬菌体DNA病毒DNA粘粒DNA克隆载体(cloningvector)为使插入的外源DNA序列被扩增而特意设计的载体称为克隆载体。表达载体(expressionvector)为使插入的外源DNA序列可转录翻译成多肽链而特意设计的载体称为表达载体。二、工具酶•限制性核酸内切酶•DNA聚合酶Ⅰ•逆转录酶•T4DNA连接酶•碱性磷酸酶•末端转移酶•TaqDNA聚合酶•多核甘酸激酶等重组DNA技术中常用的工具酶工具酶功能限制性核酸内切酶识别特异序列,切割DNADNA连接酶催化DNA中相邻的5´磷酸基和3´羟基末端之间形成磷酸二酯键,使DNA切口封合或使两个DNA分子或片段连接DNA聚合酶Ⅰ①合成双链cDNA分子或片段连接②缺口平移制作高比活探针③DNA序列分析④填补3´末端Klenow片段又名DNA聚合酶I大片段,具有完整DNA聚合酶I的53聚合、35外切活性,而无53外切活性。常用于cDNA第二链合成,双链DNA3末端标记等反转录酶①合成cDNA②替代DNA聚合酶I进行填补,标记或DNA序列分析多聚核苷酸激酶催化多聚核苷酸5´羟基末端磷酸化,或标记探针末端转移酶在3´羟基末端进行同质多聚物加尾碱性磷酸酶切除末端磷酸基三、重组DNA技术的基本原理应用酶学的方法,在体外将各种来源的遗传物质(同源的或异源的、原核的或真核的、天然的或人工的DNA)与载体DNA接合成一具有自我复制能力的DNA分子——复制子(replicon),继而通过转化或转染宿主细胞,筛选出含有目的基因的转化子细胞,再进行扩增提取获得大量同一DNA分子,也称基因克隆或DNA克隆。基本原理目的基因的获取DNA导入受体菌外源基因与载体的连接克隆载体的选择和构建重组体的筛选克隆基因的表达重组DNA技术操作过程可形象归纳为分分离目的基因切限制酶切目的基因与载体接拼接重组体转转入受体菌筛筛选重组体表表达目的基因目的基因基因载体重组体分切接转筛表总体技术路线第二节PCR概述PCR技术的创建故事发生在1983年的春夏之交KaryB.Mullis(1944-)——PCR的发明人PCR:PolymeraseChainReactionKaryB.Mullis(1944-)(1944-),在Cetus公司工作期间,发明了PCR。他原本是要合成DNA引物来进行测序工作,却常为没有足够多的模板DNA而烦恼。1983年春夏之交的一个晚上,他开车去乡下别墅的路上萌发了用两个引物(而不是一个引物)去扩增模板DNA的想法…...很少有在公司工作的科研人员得诺贝尔奖,Mullis是其中之一Mullis开车的时候,瞬间感觉两排路灯就是DNA的两条链,自己的车和对面开来的车象是DNA聚合酶,面对面地合成着DNA,……Mullis的第一个PCR实验•1983年9月中旬Mullis在反应体系中加入DNA聚合酶后在37℃一直保温。结果第二天在琼脂糖电泳上没有看到任何条带。于是他认识到有必要用加热来解链,每次解链后再加入DNA聚合酶进行反应,依次循环。1983年12月,他终于看到了被同位素标记的PCR条带。PCR的发展史•1983年春,Mullis发展出PCR的概念;•1983年9月,Mullis用大肠杆菌DNA聚合酶做了第一个PCR实验,只用一个循环;•1983年12月,用同位素标记法看到了10个循环后的49bp长度的第一个PCR片断;•1985年12月20日,Mullis的同事Saiki在Science上发了一篇论文,方法中用了PCR技术,导致Mullis的文章到处被拒;•1985年10月25日申请了PCR的专利,1987年7月28日批准(专利号4,683,202),这回Mullis是第一发明人。•1986年5月,Mullis在冷泉港实验室做专题报告,全世界从此开始学习PCR的方法;•1986年6月,Cetus公司纯化了第一种高温菌DNA聚合酶,TaqDNApolymerase,这是85年春天Mullis建议做的;•1988年,第一台PCR仪问世;•1991年,HoffmanLaRoche以3亿美元的代价从Cetus公司获得全权开发权。PCR不只是一个方法改进•Mullis的上司有句“名言”,“我们要扩增这么多DNA样品有什么用”;•到了1991,Cetus公司以3亿美元的转让费将PCR相关专利转让给瑞士HoffmanLaRoche公司,并在此后的经营中又获得了数亿美元的分红;•Mullis于1993年获得诺贝尔化学奖,PCR和DNA重组技术一样意义深远。PCR技术与体内DNA复制的区别:1.PCR不需要解旋酶;体内DNA复制需要;2.PCR需要耐热的DNA聚合酶(常用TaqDNA聚合酶),而生物体内的聚合酶在高温时会变性;3.PCR一般要经历三十多次循环,而生物体内DNA复制需要生物体自身的复制。一、PCR的定义在引物指导下由酶催化的对特定克隆或基因组DNA序列进行的体外扩增反应。二、PCR原理1stcycle2ndcycle3rdcycle过程变性引物退火延伸PCR技术原理类似于DNA的天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物。模板DNA变性:加热至94℃左右,双链DNA解离成单链;模板DNA与引物的退火(复性):55℃左右,引物与模板DNA单链的互补序列配对结合;引物的延伸:在TaqDNA聚合酶作用下,以dNTP为原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的双链;重复循环变性--退火--延伸三过程,使DNA扩增量呈指数上升。72℃94℃55℃PCR循环PCR循环--变性PCR循环--变性PCR循环--变性PCR循环—退火PCR循环—延伸PCR循环—延伸PCR循环—延伸PCR循环—延伸PCR整个过程PCRproduct三、PCR的反应体系和方法PCR管加热使模板变性,退火使引物与模板DNA互补,延伸需将反应温度升至中温(72℃),在Tap多聚酶的作用下,以dNTP为原料,以引物为复制的起点,合成新链。如此重复改变反应温度,即高温变性、低温退火和中温延伸三个阶段为一个循环,每一次循环使特异区段的基因拷贝数放大一倍,一般样品是经过30次循环,最终使基因放大了数百万倍;将扩增产物进行电泳,经溴化乙锭染色,在紫外灯照射下肉眼能见到扩增特异区段的DNA带。总体积50-100lBuffer缓冲液dNTP原料Primer引物DNA分子模板Taq酶DNA聚合酶1反应体系PCR技术的基本过程(1)模板DNAdNTP引物Buffer预变性模板DNAdNTP引物BufferTaqDNA聚合酶94oC5’2基本过程PCR技术的基本过程(2)Taq酶模板DNAdNTP引物Buffer循环仪94℃55℃72℃Taq酶模板DNAdNTP引物Buffer72℃5~7min琼脂糖凝胶电泳PCR技术的基本过程(3)1)PCR反应成分(1)模板单、双链DNA均可。不能混有蛋白酶、核酸酶、DNA聚合酶抑制剂、DNA结合蛋白类。一般100ngDNA模板/100L。模板浓度过高会导致反应的非特异性增加。3PCR反应条件(2)引物浓度0.1-0.5mol/L浓度过高易导致模板与引物错配,反应特异性下降。(3)TaqDNA聚合酶(thermusaquaticus)0.5-2.5U/50l酶量增加使反应特异性下降;酶量过少影响反应产量。(4)dNTPdNTP浓度取决于扩增片段的长度四种dNTP浓度应相等浓度过高易产生错误碱基的掺入,浓度过低则降低反应产量dNTP可与Mg2+结合,使游离的Mg2+浓度下降,影响DNA聚合酶的活性。(5)Mg2+Mg2+是DNA聚合酶的激活剂。0.5mmol/L-2.5mmol/L反应体系。Mg2+浓度过低会使Taq酶活性丧失、PCR产量下降;Mg2+过高影响反应特异性。Mg2+可与负离子结合,所以反应体系中dNTP、EDTA等的浓度影响反应中游离的Mg2+浓度。2)循环参数(1)变性使双链DNA解链为单链94oC20-30秒(2)退火温度由引物长度和GC含量决定。增加温度能减少引物与模板的非特异性结合;降低温度可增加反应的灵敏性。(3)延伸70-75℃,一般为72℃延伸时间由扩增片段长度决定(4)循环次数主要取决于模版DNA的浓度一般为25-35次次数过多:扩增效率降低错误掺入率增加经典循环参数(500bp以内)94℃30s55℃45s72℃1min94℃5min×30次72℃7min42℃forever1)不对称PCR目的:扩增产生特异长度的单链DNA。方法:采用两种不同浓度的引物。分别称为限制性引物和非限制性引物,其最佳比例一般是0.01∶0.5μM,关键是限制性引物的绝对量。用途:制备核酸序列测定的模板制备杂交探针基因组DNA结构功能的研究四、PCR的类型高浓度引物低浓度引物2)反向PCR(reversePCR)是用反向的互补引物来扩增两引物以外的DNA片段对某个已知DNA片段两侧的未知序列进行扩增。可对未知序列扩增后进行分析,如探索邻接已知DNA片段的序列;用于仅知部分序列的全长cDNA的克隆,扩增基因文库的插入DNA;建立基因组步移文库。已知序列未知序列未知序列已知序列未知序列未知序列限制酶限制酶连接酶3)多重PCR(复合PCR)可用于检测特定基因序列的存在或缺失。指在同一个PCR反应体系中加入两对以上的引物,,同时扩增一份DNA样品中不同基因位点的不同序列。4)LP-PCR(Labelledprimers)利用同位素、荧光素等对PCR引物进行标记,用以直观地检测目的基因。特别适合大量临床标本的基因诊断可同时检测多种基因成分病毒1病毒2病毒3病毒4标记引物PCR观察PCR产物5)RT-PCR逆转录酶DNA聚合酶mRNAcDNA杂化双链PCR扩增6)荧光定量PCR(real-timePCR)通过荧光染料或荧光标记的特异性的探针,对PCR产物进行标记跟踪,实时在线监控反应过程,结合相应的软件可以对结果进行分析,计算待测样品的初始模板量。荧光定量PCR仪荧光定量PCR仪是一种带有激发光源和荧光信号检测系统的PCR仪,通常配有电脑系统及相应的分析软件。7)重组PCR将两个不相邻的DNA片段重组在一起的PCR称为重组PCR。即先分段对模板扩增,除去多余的引物后,将产物混合,再用一对引物进行PCR扩增。所得到的产物是一个重组的DNA.五PCR反应特点(一)特异性强•靶序列的特异性决定扩增产物的特异性。•在较高的温度下进行,引物结合的特异性大大增加。(二)灵敏度高•PCR产物的生成量是以指数方式增加•从100万个细胞中检出一个靶细胞•在细菌学中最小检出率为3个细菌(三)简便、快速•在DNA扩增仪中进行变性-退火-延伸反应,一般1~3小时完成。(四)对模板的纯度要求低•可直接用临床标本如血液、体腔液、洗嗽液、毛发、细胞、活组织等粗制的DNA或RNA扩增检测。•Iamreallyhappytobeyourteacherofthiscourse,thankyouforyourcoorperationinmyclass.•Wishyoubesuccessfulinthefuture!•HappyNewY
本文标题:第七章 常用分子生物学技术
链接地址:https://www.777doc.com/doc-296376 .html