您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2014年上海数学考纲
2014学年全国普通高等学校招生统一考试上海卷考试手册(数学科)说明:2014学年的考试说明和2013学年的基本一致,不同之处已标出,示例如下:删除内容:“楷体、灰色、双删除线”,例如:建立不等式研究的基础新增内容:“下划线(双波浪线)”,例如:周期性替换内容:新内容:“下划线(双波浪线)”;原文:“楷体、灰色、括弧、双删除线”,例如:理解(通过类比等式的性质得到)一、考试性质全国普通高等学校招生统一考试数学科(上海卷)考试是为全国普通高等学校招生而进行的选拔性考试。选拔性考试是高利害考试,考试结果需要具有高信度,考试结果的解释和使用应该具有高效度。考试命题的指导思想是有利于促进学生健康发展,有利于科学选拔人才,有利于维护社会公平、公正(有利于高等学校选拔合格的新生,有利于中学实施素质教育,有利于培养学生的创新精神和实践能力,促进中学的数学教学改革)。考试对象为2014年符合上海市高考报名要求的考生。二、考试目标数学科高考旨在考查学生的数学基本知识和基本技能、逻辑思维能力、运算能力、空间想象能力、分析问题与解决问题的能力、数学探究与创新能力。具体考查目标为:I.数学基本知识和基本技能I.1理解或掌握初等数学中有关数与运算、方程与代数、函数与分析、数据整理与概率统计、图形与几何的基本知识。I.2领会集合、对应、函数、算法、数学建模、概率、统计以及化归、数形结合、分类讨论、分解与组合等基本数学思想,掌握坐标法、参数法、逻辑划分和等价转换等基本数学方法。I.3能按照一定的规则和步骤进行计算、画图和推理;掌握数学阅读、表达以及文字语言、图形语言、符号语言之间进行转换的基本技能;会使用函数型计算器进行有关计算。II.逻辑思维能力II.4能从数学的角度有条理地思考问题。II.5具有对数学问题或资料进行观察、分析、综合、比较、抽象、概括、判断和论证的能力。II.6会进行演绎、归纳和类比推理,能合乎逻辑地、准确地阐述自己的思想和观点。II.7会正确而简明的表述推理过程,能合理地、符合逻辑地解释演绎推理的正确性。III.运算能力III.8理解数和式的有关算理。III.9能根据法则准确地进行运算、变形。III.10能够根据条件,寻找与设计合理、简捷的运算途径。III.11能通过运算,对问题进行推理和探求。IV.空间想象能力IV.12能根据条件画出正确的图形。IV.13能根据图形想象出直观形象。IV.14能正确地分析图形中的基本元素和相互关系。IV.15能对图形进行分解、组合和变形。IV.16会选择适当的方法对图形的性质进行研究。V.分析问题与解决问题的能力V.17能自主地学习一些新的数学知识(概念、定理、性质和方法等),并能初步运用。V.18能综合运用基本知识、基本技能、数学思想方法和适当的解题策略,解决有关数学问题。V.19能通过建立数学模型,解决有关社会生活、生产实际或其他学科的问题,并能解释其实际意义。VI.数学探究与创新能力VI.20会利用已有的知识和经验,发现和提出有一定价值的问题。VI.21能运用有关的数学思想方法和科学研究方法,对问题进行探究,寻找数学对象的规律和联系;能正确地表述探究过程和结果,并予以证明。VI.22在新的情景中,能正确地表述数量关系和空间形式,并能在创造性地思考问题的基础上,对较简单的问题得出一些新颖的(对高中学生而言)结果。三、试卷结构及相关说明1.题型整卷含有填空题、选择题和解答题三种题型,填空题和选择题占总分的50%左右,解答题占总分的50%左右。2.考试目标和内容占总分的比例按测量目标划分,数学基本知识和基本技能占40%左右,逻辑思维能力、运算能力、空间想象能力占40%左右,分析问题与解决问题能力、数学探究与创新能力占20%左右。按课程内容划分,数与运算、方程与代数、函数与分析,数据整理与概率统计占65%-70%,图形与几何占30%-35%。3.试卷难易度比例试题按相对难度分为容易题、中等题、较难题,这三种难度的试题分布在各题型当中,且它们的分值原则上分别占总分的40%、40%、20%左右。4.考试形式和试卷总分考试形式为闭卷书面,试卷包括试题纸和答题纸(样张见附件)两部分,考生应将答案全部做在答题纸上。试卷总分为150分。5.考试时间考试时间为120分钟。6.携带计算器的规定根据沪教考院高招【2002】38号文件:“对带入考场的计算器品牌和型号不作规定,但附带计算器功能的无线通讯工具、记忆存储等设备和附带无线通讯功能、记忆存储功能、具有图像功能的计算器不得带入考场。”四、考试内容与要求根据《上海市中小学数学课程标准》(试行稿)(2004年10月第2版)的安排,考试内容和要求如下:本学科考试将认知水平分为三个层次。水平层级基本特征记忆水平能识别或记住有关的数学事实材料,使之再认或再现;能在标准的情景中作简单的套用,或按照示例进行模仿用于表述的行为动词如:知道、了解、认识、感知、识别、初步体会、初步学会等解释性明了知识的来龙去脉,领会知识的本质,能用自己的语言或转换方式正确表达知识内容;理解水平在一定的变式情境中能区分知识的本质属性与非本质属性,会把简单变式转换为标准式,并解决有关的问题用于表述的行为动词如:说明、表达、解释、理解、懂得、领会、归纳、比较、推测、判断、转换、初步掌握、初步会用等探究性解释水平能把握知识的本质及其内容、形式的变化;能从实际问题中抽象出数学模型或作归纳假设进行探索,能把具体现象上升为本质联系,从而解决问题;会对数学内容进行扩展或对数学问题进行延伸,会对解决问题过程的合理性、完整性、简捷性作有效的思考用于表述的行为动词如:掌握、推导,证明、研究、讨论、选择、决策、解决问题、会用、总结、设计、评价等文、理科共同考查内容和要求方程与代数内容要求记忆水平解释性理解水平探究性理解水平一、集合与命题集合及其表示知道集合的意义。会对集合的意义进行描述。认识一些特殊集合的记号懂得元素及其与集合的关系符号。初步掌握基本的集合语言会用“列举法”和“描述法”表示集合。体会数学抽象的意义。掌握用区间表示集合的方法子集理解集合之间的包含关系掌握子集的概念。能用集合语言表述和解决一些简单的实际问题交集、并集、补集知道有关的基本运算性质掌握集合的“交”、“并”、“补”等运算命题的四种形式了解一些基本的逻辑关系及其运用,了解集合与命题之间的联系,体会逻辑语言在数学表达和论证中的作用理解否命题、逆否命题,明确命题的四种形式及其相互关系,建立命题与集合之间的联系。领会分类、判断、推理的思想方法充分条件、必要条件、充分必要条件理解充分条件、必要条件、充分必要条件的意义。能在简单的问题情景中判断条件的充分性、必要性或充分必要性子集与推出关系知道子集与推出关系之间的联系初步体会利用集合知识理解逻辑关系二、不等式不等式的基本性质及其证明理解用两个实数差的符号规定两个实数大小的意义,建立不等式研究的基础。。理解(通过类比等式的性质得到)不等式的基本性质,并能加以证明会用不等式基本性质判断不等关系和用比较法、综合法、分析法证明简单的不等式。掌握比较法、综合法和分析法的基本思路及其表达基本不等式掌握基本不等式并会用于解决简单的问题一元二次不等式(组)理解一元二次不等式、一元二次方程和二次函数之间的在探索不等式解法的过程中,体会不等式、方程的解法关联;初步会用不等式解决一些简单的实际问题。在运用不等式知识解决一些简单实际问题的过程中,理解不等式(组)对于刻画不等关系的意义和函数之间的联系分式不等式的解法掌握分式不等式的解法,会利用转化思想解不等式含有绝对值的不等式的解法会解可化为形如:()fxa<或12|()||()|fxfx的不等式,其中()fx、1()fx、2()fx是一次多项式三、矩阵与行列式初步矩阵理解矩阵的意义会用矩阵的记号表示线性方程组二阶、三阶行列式理解行列式的意义掌握二阶、三阶行列式展开的对角线法则,以及三阶行列式按照某一行(列)展开的方法。会利用计算器求行列式的值二元、三元线性方程组解的讨论掌握二元、三元线性方程组的公式解法(用行列式表示),会对含字母系数的二元、三元线性方程组的解的情况进行讨论四、算法初步算法的含义了解算法的含义体会算法思想程序框图在具体问题的解决过程中,理解程序框图的逻辑结构:顺序,条件分支,循环五、数列与数学数列的有关概念理解数列、数列的项、通项、有穷数列、无穷数列、递增数列、递减数列、常数列等概念等差数列掌握等差数列的通项公式及前n项和公式等比数列掌握等比数列的通项公式及前n项和公式。会(体验)用类比的思想方法对等差数列和等比数列进行研究(的活动)简单的从生活实际和数学背归纳法递推数列景中提出递推数列并进行研究。会解决简单的递推数列的有关问题(主要指一阶线性递推数列)数列的极限理解直观描述的数列极限的意义掌握数列极限的四则运算法则无穷等比数列各项的和会求无穷等比数列各项的和数列的实际应用问题会用数列知识解决简单的实际问题;通过数列的建立及其应用,具有一定的数学建模能力数学归纳法知道数学归纳法的基本原理掌握数学归纳法的一般步骤,并会用于证明与正整数有关的简单命题和整除性问题归纳—猜测—论证领会“归纳—猜测—论证”的思想方法通过“归纳—猜测—论证”的思维过程,具有一定的演绎推理能力和归纳、猜测、论证的能力函数与分析内容要求记忆水平解释性理解水平探究性解释水平一、函数及其基本性质函数的有关概念理解函数是变量之间相互依赖关系的一种反映,加深理解函数的概念,熟悉函数表达的解析法、列表法和图像法,懂得函数的抽象记号以及函数定义域和值域的集合表示掌握求函数定义域的基本方法。在简单情形下能通过观察和分析确定函数的值域函数的运算理解两个函数的和函数、积函数的概念函数关系的建立通过解决具有实际背景的简单问题,领会分析变量和建立函数关系的思考方法。初步会用函数观点观察和分析一些自然现象和社会现象体验函数模型建立的一般过程,加深对事物运动变化和相互联系的认识函数的基本性质通过对函数零点的研究,体会“二分法”和逼近思想,熟悉计算器的应用。能利用函数的奇偶性描绘函数的图像从直观到解析、从具体到抽象研究函数的性质,并能从解析的角度理解有关性质。在直观认识函数基本性质的基础上,从具体函数到抽象表示的函数对其基本性质进行解析研究。掌握函数的奇偶性、单调性、零点、最值和周期性等基本性质以及反映这些基本性质的图像特征。能根据不同问题灵活地用解析法、列表法和图像法来表示变量之间的关系和研究函数的性质;会利用函数的性质来解决简单的实际问题。领悟数形结合的思想二、指数函数与对数函数简单的幂函数、二次函数的性质知道幂函数的概念(所研究的幂函数的幂指数1112,1,,,,1,2,3232a)掌握简单的幂函数、二次函数的性质,以及研究函数性质的过程和方法(以简单的幂函数、二次函数等为例,研究它们的性质,体验研究函数性质的过程和方法)指数函数的性质与图像理解有关的基本概念,进一步领会研究函数的基本方法体会指数函数的应用价值掌握指数函数的性质和图像对数初步学会换底公式的基本运用理解对数的意义。体会变换思想掌握积、商、幂的对数性质。会用计算器求对数反函数掌握互为反函数的两个函数之间的关系(经历探索互为反函数的两个函数图像之间的过程,并掌握其关系)对数函数的性质与图像理解对数函数的意义体会变换思想。体会指数函数和对数函数的应用价值利用对数函数与指数函数互为反函数的关系,研究与掌握对数函数的性质和图像指数方程和对数方程理解指数方程和对数方程的概念,会求指数方程和对数方程近似解的常用方法,如图像法、逼近法或使用计算器等会解简单的指数方程和对数方程。会(在)利用函数的性质求解指数方程、对数方程以及求方程的近似解(的过程中),体会函数与方程之间的内在联系函数的应用体验数学建模、求解和解释的过程,增强数形结合的意识和建模求解的能力弧度制、理解有关概念,会进行弧度三、三角比任意角度及其度量制与角度制的互化任意角的三角比掌握任意角三角比的定义(含正弦、余弦、正切、余切、正割、余割)同角三角比的关系掌握同角三角比的关系式诱
本文标题:2014年上海数学考纲
链接地址:https://www.777doc.com/doc-2965164 .html